
CSC6203

Large Language Model

Lecture 2: Large language model and beyond

Fall 2024
Benyou Wang

School of Data Science

Before the lecture …

OpenAI o1 is coming

Maybe there will never be a GPT-5?

https://openai.com/index/learning-to-reason-with-llms/

“We evaluated math performance on AIME, an exam designed to challenge the brightest high school math students in America”

A score of 13.9 (re-ranking 1000; 83%-- 12.5/15 is for re-ranking 64) places it among the top 500 students nationally and above the cutoff for the
USA Mathematical Olympiad.

I: Scaling test-time computing (TTC)

Example of TTC: OVM

Step 𝑠1
1

Generator

Step 𝑠121
3

𝑞

Step 𝑠12
2

Level1 Level2 Level3

Answer 𝑎1

Answer 𝑎2

Level4

Step 𝑠2
1

Step 𝑠11
2

Step 𝑠122
3

Fei Yu, Anningzhe Gao, Benyou Wang. OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning.

https://arxiv.org/abs/2311.09724. Findings of NAACL 2024.

Inference-time tree search, to enhance multi-step reasoning performance

https://paperswithcode.com/sota/arithmetic-reasoning-on-gsm8k

II: Chain of thoughts

Instruction: Write a bash script that takes a matrix represented as a
string with format '[1,2],[3,4],[5,6]' and prints the transpose in the
same format.

II: CoT (1)

So the user is requesting a bash script that can take a string representing a matrix, such as '[1,2],[3,4],[5,6]' and output its transpose, in the

same format.

Let's first understand the input and output formats.

Input: '[1,2],[3,4],[5,6]'

which corresponds to the matrix:

1 2

3 4

5 6

So the input is a series of rows, each in brackets separated by commas.

The transpose of this matrix would be:

1 3 5

2 4 6

So the requested output is '[1,3,5],[2,4,6]'

II: CoT (2)

Overall Task:

Write a bash script that takes one argument (the string representing the matrix) and outputs its transpose in the same format.

Ok, let's think about how to parse the input string in bash, build the matrix (probably in arrays), transpose it, and then output the resulting

transposed matrix in the expected format.

Constraints:

- Since it's bash, we have to be careful with parsing strings.

- The script should accept the input string as an argument.

Approach:

- Parse the input string to extract the matrix elements.

- Build the matrix as an array of arrays.

- Transpose the matrix.

- Output the transposed matrix in the same format.

II: CoT (3)
Implementation Steps:

1. Capture input string as argument.

2. Remove any spaces (if any).

3. Parse the input string to extract numbers into arrays.

- Since the input is in the format '[1,2],[3,4],[5,6]', we can:

- Remove outer brackets if necessary.

- Split the string by '],' to get each row.

- For each row, remove '[' and ']', then split by ',' to get elements.

4. Build a 2D array in bash (arrays containing arrays).

- Since bash arrays are one-dimensional, we need to simulate 2D arrays.

5. Transpose the matrix.

- For transposing, we'll need to switch rows and columns.

6. Output the transposed matrix in the required format.

- Reconstruct the output string in the format '[1,3,5],[2,4,6]'

Now, start coding step by step.

Under potential issues:

- Bash does not have multi-dimensional arrays natively, so we need to simulate.

- We need to handle numbers that can be more than one digit.

II: CoT (4)
Let me try to simulate what happens.

I'll write this as an answer.

[code]

Save this script to a file, for example, transpose.sh, make it executable with
chmod +x transpose.sh, and run it:

Bash

1
1
./transpose.sh '[1,2],[3,4],[5,6]'
It will output:

Bash

1
1
[1,3,5],[2,4,6]
…

System 1 vs. System 2

https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow

To recap…

What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

A conditional language model assigns a probability of a word given
some conditioning context

𝑔: (𝑉𝑛−1 , 𝑉) → 𝑅+

And 𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) = 𝑔(𝑤1 ⋯𝑤𝑛−1, 𝑤) =
𝑓(𝑤1⋯𝑤𝑛)

𝑓(𝑤1⋯𝑤𝑛−1)

𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) is the foundation of modern large language models (GPT, ChatGPT, etc.)

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

GPT-3 still acts in this way but the model is implemented as a very large neural network of 175-

billion parameters!

Language models:Broad Sense

❖ Decoder-only models (GPT-x models)

❖ Encoder-only models (BERT, RoBERTa, ELECTRA)

❖ Encoder-decoder models (T5, BART)

The latter two usually involve a

different pre-training

objective.

Today’s lecture

• Language model in a narrow sense

(Probability theory, N-gram language model)

• Language model in broad sense

• More thoughts on language model

Why do we need language models?

Many NLP tasks require natural language output:
-Machine translation: return text in the target language

-Speech recognition: return a transcript of what was spoken

-Natural language generation: return natural language text

-Spell-checking: return corrected spelling of input

Language models define probability distributions over (natural language)

strings or sentences.

➔We can use a language model to score possible output strings so that we

can choose the best (i.e. most likely) one: if PLM(A) > PLM(B), return A, not B

Hmmm, but…

… what does it mean for a language model to “define a

probability distribution”? [Google N-gram dataset]

… why would we want to define probability

distributions over languages? [evaluation]

… how can we construct a language model such that it

actually defines a probability distribution? [evaluation]

http://commondatastorage.googleapis.com/books/syntactic -ngrams/index.html

Reminder:

Basic Probability Theory

P() = 2/15

P(blue) = 5/15

P(blue |) = 2/5

P(red)

P() = 1/15

= 5/15

P() = 5/15

P(or) = 2/15

P(|red) = 3/5

Pick a random shape, then put it back in the bag.

Sampling with replacement

Pick a random shape, then put it back in the bag.

What sequence of shapes will you draw?

P()
= 1/15 ×1/15 ×1/15 ×2/15

= 2/50625

P()
= 3/15 ×2/15 ×2/15 ×3/15

= 36/50625

P() = 2/15

P(blue) = 5/15

P(blue |) = 2/5

P(red)

P() = 1/15

= 5/15

P() = 5/15

P(or) = 2/15

P(|red) = 3/5

Sampling with replacement

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

Sampling with replacement
Alice was beginning to get very tired of

sitting by her sister on the bank, and of

having nothing to do: once or twice she

had peeped into the book her sister was

reading, but it had no pictures or

conversations in it, 'and what is the use

of a book,' thought Alice 'without

pictures or conversation?'

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

In this model, P(English sentence) = P(word salad)

Sampling with replacement
beginning by, very Alice but was and?

reading no tired of to into sitting

sister the, bank, and thought of without

her nothing: having conversations Alice

once do or on she it get the book her had

peeped was conversation it pictures or

sister in, 'what is the use had twice of

a book''pictures or' to

Probability theory: terminology

Trial (aka “experiment”)
Picking a shape, predicting a word

Sample space Ω:

The set of all possible outcomes

(all shapes; all words in Alice in Wonderland)

Event ω ⊆ Ω:

An actual outcome (a subset of Ω)

(predicting ‘the’, picking a triangle)

Random variable X: Ω → T
A function from the sample space (often the identity function)

Provides a ‘measurement of interest’ from a trial/experiment

(Did we pick ‘Alice’/a noun/a word starting with “x”/…?)

3) And the probability of all disjoint events sums to 1.

What is a probability distribution?

P(ω) defines a distribution over Ω iff

1) Every event ω has a probability P(ω) between 0 and 1:

0 ≤ P (ω ⊆ Ω) ≤ 1

2) The null event ∅ has probability P(⊘) = 0:

P (⊘) = 0

The conditional probability of X given Y, P(X | Y),

is defined in terms of the probability of Y, P(Y),

and the joint probability of X and Y, P(X,Y):

Joint and Conditional Probability

P (X |Y) =
P (X, Y

) P (Y

)

P(blue |) = 2/5

The chain rule

The joint probability P(X,Y) can also be expressed in

terms of the conditional probability P(X | Y)

P (X, Y) = P (X|Y)P (Y)

This leads to the so-called chain rule

Independence

Two random variables X and Y are independent if

P (X, Y) = P (X) P (Y)

If X and Y are independent, then P(X | Y) = P(X):

P (X |Y) =
P (X, Y

) P (Y

)P (X) P (Y)

P (Y)
(X ,Y independent)=

= P (X)

Probability models

Building a probability model consists of two steps:

1. Defining the model
2. Estimating the model’s parameters

(= training/learning)

Models (almost) always make

independence assumptions.
That is, even though X and Y are not actually independent,

our model may treat them as independent.

This reduces the number of model parameters that

we need to estimate (e.g. from n2 to 2n)

Language modeling with n-grams

A language model over a vocabulary V

assigns probabilities to strings drawn from V*.

Recall the chain rule:
P(w(1) . . .w(i)) = P(w(1)) ⋅P(w(2) | w(1)) ⋅.. . ⋅P(w(i) | w(i−1), . . . ,w(1))

An n-gram language model assumes each word

depends only on the last n−1 words:

Pngram(w(1) .. .w(i)) = P(w(1)) ⋅P(w(2) | w(1)) ⋅.. . ⋅P(w(i) | w(i−1), .. . ,w(1−(n+1)))

Language modeling with N-grams

N-gram models

N-gram models assume each word (event)

depends only on the previous n−1 words (events):
N

Unigram model: P(w(1) . . .w(N)) = ∏ P(w(i))
i=1

N

Bigram model: P(w(1) . . .w(N)) = ∏ P(w(i) | w(i−1))
i=1

N

i=1

Such independence assumptions are called

Markov assumptions (of order n−1).

Trigram model: P(w(1) . . . w(N)) = ∏ P(w(i) | w(i−1),
w(i−2))

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

In this model, P(English sentence) = P(word salad)

A unigram model for Alice
beginning by, very Alice but was and?

reading no tired of to into sitting

sister the, bank, and thought of without

her nothing: having conversations Alice

once do or on she it get the book her had

peeped was conversation it pictures or

sister in, 'what is the use had twice of

a book''pictures or' to

Alice was beginning to get very tired of

sitting by her sister on the bank, and of

having nothing to do: once or twice she

had peeped into the book her sister was

reading, but it had no pictures or

conversations in it, 'and what is the use

of a book,' thought Alice 'without

pictures or conversation?'

P(w(i) = of | w(i–1) = tired) = 1

P(w(i) = of | w(i–1) = use) = 1

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) =

1/3 P(w(i) = book | w(i–1) = the)

= 1/3 P(w(i) = use | w(i–1) = the)

= 1/3

A bigram model for

Alice

Where do we get the probabilities

from?

Learning (estimating) a language model

Where do we get the parameters of our model

(its actual probabilities) from?

P(w(i) = ‘the’ | w(i–1) = ‘on’) = ???

We need (a large amount of) text as training data

to estimate the parameters of a language model.

The most basic parameter estimation technique:

relative frequency estimation (= counts)

P(w(i) = ‘the’ | w(i–1) = ‘on’) = C(‘on the’) / C(‘on’)

Also called Maximum Likelihood Estimation (MLE)

NB: MLE assigns all probability mass to events

that occur in the training corpus.

Are n-gram models actual

language models?

How do n-gram models define P(L)?

is a distribution:

i=1...N

An n-gram model defines Pngram(w(1) . . . w(N)) in terms of the

probability of predicting each word: Pbigram(w(1) . . . w(N)) = ∏ P(w(i) |

w(i−1))

With a fixed vocabulary V, it’s easy to make sure P(w(i) |w(i−1))

i=1...|V|

∑ P(wi | wj) = 1 and ∀i, j 0 ≤ P(wi | wj)≤ 1

If P(w(i) | w(i−1)) is a distribution, this model defines

one distribution (over all strings) for each length N

But the strings of a language L don’t all have the same length

English = {“yes!”, “I agree”, “I see you”, …}

And there is no Nmax that limits how long strings in L canget.

Solution: the EOS (end-of-sentence) token!

How do n-gram models define P(L)?

Think of a language model as a stochastic process:
-At each time step, randomly pick one more word.

-Stop generating more words when the word you pick is a special end-

of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our

training data so that each sentence ends in EOS.

This means our vocabulary is now VEOS = V ∪{EOS}

We then get an actual language model,

i.e. a distribution over strings of any length
Technically, this is only true because P(EOS | …) will be high enough that we are always

guaranteed to stop after having generated a finite number of words

Why do we care about having one model for all lengths?

We can now compare the probabilities of strings of different

lengths, because they’re computed by the same distribution.

A couple more modifications…

Handling unknown words: UNK

Training:
-Assume a fixed vocabulary (e.g. all words that occur at least
n times in the training corpus)

-Replace all other words in the corpus by a token <UNK>

-Estimate the model on this modified training corpus.

Testing (e.g to compute probability of a string):
-Replace any words not in the vocabulary by <UNK>

Refinements:

use different UNK tokens for different types of words

(numbers, etc.).

What about the beginning of the sentence?

In a trigram model
P(w(1)w(2)w(3)) = P(w(1))P(w(2)| w(1))P(w(3) |w(2),w(1))

only the third term P(w(3) | w(2),w(1)) is an actual trigram
probability. What about P(w(1)) and P(w(2) | w(1)) ?

If this bothers you:

Add n–1 beginning-of-sentence (BOS) symbols to

each sentence for an n–gram model:
BOS1 BOS2 Alice was …

Now the unigram and bigram probabilities

involve only BOS symbols.

Using language models

How do we use language models?

Independently of any application, we can use a

language model as a random sentence generator
(i.e we sample sentences according to their language model

probability)

Systems for applications such as machine translation,

speech recognition, spell-checking, generation, often

produce multiple candidate sentences as output.
- We prefer output sentences SOut that have a higher probability

-We can use a language model P(SOut) to score and rank these

different candidate output sentences, e.g. as follows:

argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut)

Example: language model in information retrieval.

An example of ASR to use language models

这儿有周杰伦演唱会（There is a Jay Chou
concern!）

• Acoustic Model：周杰轮？周捷伦？

• Acoustic Model + language models：周杰伦

Using n-gram models to

generate language

Generating from a distribution

x1 x2 x3 x4 x5

0 p1 p1+p2 p1+p2+p3 p1+p2+p3+p4 1

How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X |Y=y)?

-Assume X has N possible outcomes (values): {x1, …, xN}

and P(X=xi | Y=y) = pi

- Divide the interval [0,1] into N smaller intervals accordingto

the probabilities of the outcomes
-Generate a random number r between 0 and 1.

-Return the x1 whose interval the number is in.
r

Generating the Wall Street Journal

Generating Shakespeare

Shakespeare as corpus

The Shakespeare corpus consists of N=884,647 word

tokens and a vocabulary of V=29,066 word types

Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigram types.

99.96% of possible bigrams don’t occur in the corpus.

Our relative frequency estimate assigns non-zero

probability to only 0.04% of the possible bigrams
That percentage is even lower for trigrams, 4-grams, etc.

Use data from https://huggingface.co/datasets/Trelis/tiny-shakespeare or

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

We estimated a model on 440K word tokens, but:

Only 30,000 word types occur in the training data

Any word that does not occur in the training data

has zero probability!

Only 0.04% of all possible bigrams (over 30K word

types) occur in the training data

Any bigram that does not occur in the training data
has zero probability (even if we have seen both words in

the bigram)

MLE doesn’t capture unseen events

How we assign non-zero

probability to unseen events?

P(seen)

= 1.0
P(seen)

< 1.0

We have to “smooth” our distributions to assign some

probability mass to unseen events
P(unseen)

> 0.0

???

MLE model Smoothed model

We won’t talk much about smoothing this year.

Smoothing methods

Add-one smoothing:

Hallucinate counts that didn’t occur in the data

Linear interpolation:

P̃ (w| w′, w′′) = λP̂(w | w′, w′′) + (1 − λ)P̃ (w| w′)
Interpolate n-gram model with (n–1)-gram model.

Absolute Discounting: Subtract constant count from

frequent events and add it to rare events
Kneser-Ney: AD with modified unigram probabilities

Add-One (Laplace) Smoothing

A really simple way to do smoothing:

Increment the actual observed count of every possible
event (e.g. bigram) by a hallucinated count of 1

(or by a hallucinated count of some k with 0<k<1).

Shakespeare bigram model (roughly):
0.88 million actual bigram counts

+ 844.xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model

come from actual data. We’re back to word salad.

K needs to be really small. But it turns out that that still doesn’t

work very well.

Evaluation

Intrinsic vs Extrinsic Evaluation

How do we know whether one language

model is better than another?

There are two ways to evaluate models:
- intrinsic evaluation captures how well the model

captures what it is supposed to capture (e.g.

probabilities)

- extrinsic (task-based) evaluation captures how useful

the model is in a particular task.

Both cases require an evaluation metric that allows us

to measure and compare the performance of different

models.

Intrinsic Evaluation of

Language Models: Perplexity

Perplexity

If a LM assigns probability P(w1, …, wN) to a test

corpus w1…wN, the LM’s perplexity, PP(w1…wN),

A LM with lower perplexity is better because it assigns

a higher probability to the unseen test corpus.
LM1 and LM2’s perplexity can only be compared if they use the same vocabulary

— Trigram models have lower perplexity than bigram models;

— Bigram models have lower perplexity than unigram models, etc.

The perplexity of a language models is defined as

the inverse (1) of the probability of the test set,
P(. . .)

Nnormalized (. . .) by the # of tokens (N) in the test set.

PP(w1...wN) == N
1

P(w1...wN)

Practical issues

with

• Since language model probabilities are very small,

multiplying them together often yields to underflow.

• It is often better to use logarithms instead, so replace

Extrinsic (Task-Based)

Evaluation of LMs:

Word Error Rate

Intrinsic vs. Extrinsic Evaluation

Perplexity tells us which LM assigns a higher

probability to unseen text

This doesn’t necessarily tell us which LM is better for

our task (i.e. is better at scoring candidate sentences)

Task-based evaluation:
- Train model A, plug it into your system for performing task T
- Evaluate performance of system A on task T.

- Train model B, plug it in, evaluate system B on same task T.

- Compare scores of system A and system B on task T.

Originally developed for speech recognition.

How much does the predicted sequence of words

differ from the actual sequence of words in the correct

transcript?

Insertions:

Deletions: “see a movie” → “see movie”

Substitutions: “drink ice tea” → “drink nice tea”

Word Error Rate (WER)

WER =
Insertions + Deletions + Substitutions

Actual words intranscript

“eat lunch” → “eat a lunch”

To recap….

Key concepts in summary

N-gram language models
Independence assumptions

Getting from n-grams to a distribution over a language

Relative frequency (maximum likelihood) estimation

Smoothing

Intrinsic evaluation: Perplexity,

Extrinsic evaluation: WER

Contents

• Language model in a narrow sense

(Probability theory, N-gram language model)

• Language model in broad sense

(BERT and beyond)

• More thoughts on language model

More on N-gram LMs

the students opened their

•Question: How to learn a Language Model?

•Answer (pre- Deep Learning): learn an n-gram Language Model!

•Definition: An n-gram is a chunk of n consecutive words.

•unigrams: “the”, “students”, “opened”, ”their”

•bigrams: “the students”, “students opened”, “opened their”

•trigrams: “the students opened”, “students opened their”

•four-grams: “the students opened their”

•Idea: Collect statistics about how frequent different n-grams are and use

these to predict next word.

N-gram Language Models

N-gram Language Models

•First we make a Markov assumption: 𝑥
(n)

depends only on the preceding n-1 words

•Question: How do we get these n-gram and (n-1)-gram probabilities?

•Answer: By counting them in some large corpus of text!

(statistical approximation)

N-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their

discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• P(exams | students opened their) = 0.1
71

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.

Typically, we can’t have n bigger than 5.

Problem: What if “students

opened their” never occurred in

data? Then we can’t calculate

probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students

opened their 𝑤” never

occurred in data? Then 𝑤 has

probability 0!

Sparsity Problem 1

(Partial) Solution: Add small

𝛿 to the count for every 𝑤∈
𝑉. This is called smoothing.

(Partial) Solution: Just condition on

“opened their” instead.

This is called backoff.

72

Storage Problems with n-gram Language Models

73

Storage: Need to store

count for all n-grams

you saw in the corpus.

Increasing n or increasing

corpus increases model size!

How to build a neural language model?

• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition :

LOCATION

in Paris are amazingmuseums 74

A fixed-window neural Language Model

the students opene

d

their

books

laptop

s

concatenated word embeddings

words / one-hot vectors

hidden layer

a zo

o

output distribution

75

A fixed-window neural Language Model

the

stude

nts

opene

d

thei

r

book

s laptop

s

a zo

o

Improvements over n-gram LM:

• No sparsity problem

• Don’t need to store all observed n-grams

Remaining problems:

• Fixed window is too small

• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥(!) and 𝑥(") are multiplied by completely

different weights in 𝑊. No symmetry in how

the inputs are processed.

We need a neural architecture that can

process any length input

Recurrent NN is the solution !

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

From N-gram LMs to Word vectors

the

stude

nts

opene

d

thei

r

book

s laptop

s

a zo

o

Word embedding/Vectors !

Byproducts of NNLM : word embedding

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

❏ the idea that is represented by a word, phrase, etc.

❏ the idea that a person wants to express by using words, signs, etc.

❏ the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

❏ signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

❏ Tree ⟺ {🌳, 🌲, 🌴, …}

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Representing words as discrete symbols

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

❏ In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

❏ Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

❏ Vector dimension = number of words in vocabulary (e.g., 500,000+)

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Representing words by their context

Distributional semantics: A word’s meaning is given by the words that frequently

appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby

(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Word2Vec Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

Idea:

• We have a large corpus (“body”) of text: a long list of words

• Every word in a fixed vocabulary is represented by a vector

• Go through each position t in the text, which has a center word c and context

(“outside”) words o

• Use the similarity of the word vectors for c and o to calculate the probability of o

given c (or vice versa)

• Keep adjusting the word vectors to maximize this probability

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Word2vec: objective function

❏ We want to minimize the objective function:

❏ Question: How to calculate

Answer: We will use two vectors per word w:

❏ when w is a center word

❏ when w is a context word

Then for a center word c and a context word o: (softmax)

“max” because amplifies probability of largest

“soft” because still assigns some probability to smaller

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Word structure and subword models

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Interesting characters/words

• 夵 《广韵》《集韵》并以冉切，音琰 (yan3)。物上大下小也。
又《集韵》他刀切，音叨(tao1)。进也。

• LGUer

• Looooooooong

A paper from ours： MorphTE

Guobing Gan, Peng Zhang, Sunzhu Li, Xiuqing Lu, Benyou Wang. MorphTE: Injecting Morphology in Tensorized Embeddings. NeurIPS 2022

From static word vector to

contextualized word vectors

What’s wrong with word2vec?

• One vector for each word type

• Complex characteristics of word use: semantics, syntactic behavior, and connotations

• Polysemous words, e.g., bank, mouse

Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

movie was terribly exciting !the

Contextualized word embeddings

f : (w1, w2, … , wn) ⟶ x1, … , xn ∈ ℝd

ELMo

•

•

NAACL’18: Deep contextualized word representations

Key idea:

• Train an LSTM-based language model on some
large corpus

• Use the hidden states of the LSTM for each token
to compute a vector representation of each word

ELMo

input
softmax

words in the
sentence

How to use ELMo?

• γtask: allows the task model to scale the entire ELMo vector

• stask: softmax-normalized weights across

layers
j

hlM = xLM, hLM = [h LM; h
LM]

k,0 k k,j k,j k,j

• Plug ELMo into any (neural) NLP model: freeze all the LMs
weights and change the input representation to:

(could also insert into higher layers)

of layers

Use ELMo in practice

https://allennlp.org/elmo

Also available in TensorFlow

BERT

•
•

First released in Oct 2018.

NAACL’19: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

How is BERT different from ELMo?

#1. Unidirectional context vs bidirectional context

#2. LSTMs vs Transformers (will talk later)

#3. The weights are not freezed, called fine-tuning

Bidirectional encoders

•

•

Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

Language understanding is bidirectional

Lecture 9:

Why are LMs unidirectional?

Bidirectional encoders

•

•

Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

Language understanding is bidirectional

Masked language models (MLMs)

• Solution: Mask out 15% of the input words, and then predict the
masked words

•
•

Too little masking: too expensive to train

Too much masking: not enough context

Masked language models (MLMs)

A little more complication:

Because [MASK] is never seen when BERT is used…

Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is
followed after the first one.

Recent papers show that NSP is not necessary…

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans
(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach

Pre-training and fine-tuning

Pre-training Fine-tuning

Key idea: all the weights are fine-tuned on downstream
tasks

Applications

More details

• Input representations

• Use word pieces instead of words: playing => play ##ing Assignment 4

• Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)

• Released two model sizes: BERT_base, BERT_large

Variants of

contextualized word vectors

Overview

Benyou Wang et.al. Pre-trained Language Models in Biomedical Domain: A Systematic Survey. ACM Computing Survey.

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Pretraining encoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

So far, we’ve looked at language model pretraining. But encoders get bidirectional context,

so we can’t do language modeling!

Idea: replace some fraction of words in the

input with a special [MASK] token; predict

these words.

Only add loss terms from words that are “masked

out.” If is the masked version of 𝑥, we’re

learning . Called Masked LM. [Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Transformers

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a

pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80%

of the time

• Replace input word with a random token

10% of the time

• Leave input word unchanged 10% of the

time (but still predict it!)

• Why? Doesn’t let the model get complacent

and not build strong representations of non-

masked words. (No masks are seen at fine-

tuning time!)

[Devlin et al.,

2018]

https://arxiv.org/pdf/1810.04805.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Pretraining encoder-decoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

For encoder-decoders, we could do something like language modeling, but where a prefix

of every input is provided to the encoder and is not predicted.

The encoder portion benefits from bidirectional context;

The decoder portion is used to train the whole model through

language modeling.

[Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

[Raffel et al., 2018]

Replace different-length spans from the input with

unique placeholders; decode out the spans that were

removed!

This is implemented in text preprocessing: it’s

still an objective that looks like language

modeling at the decoder side.

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf
[Raffel et al., 2018]

A fascinating property of T5: it

can be finetuned to answer a

wide range of questions,

retrieving knowledge from its

parameters.

NQ: Natural Questions

WQ: WebQuestions

TQA: Trivia QA

All “open-domain” versions

https://arxiv.org/pdf/1910.10683.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Back to the language model

(next word predict)

Pretraining decoders

When using language model pretrained decoders, we can ignore that they were trained

to model

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

We can finetune them by training a

classifier on the last word’s hidden state.

Where 𝐴 and 𝑏 are randomly initialized and

specified by the downstream task.

Gradients backpropagate through the whole

network.
[Note how the linear layer hasn’t been

pretrained and must be learned from scratch.]

Pretraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

This is helpful in tasks where the output

is a sequence with a vocabulary like that

at pretraining time!

• Dialogue (context=dialogue history)

• Summarization (context=document)

[Note how the linear layer has been pretrained.] Where 𝐴, 𝑏 were pretrained in the

language model!

Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language

models. GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to

produce relatively convincing samples of natural language.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Very large language models seem to perform some kind of learning without

gradient steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11

billion parameters. GPT-3 has 175 billion parameters.

LLaMA, Open-Source Models

Meta hopes to advance NLP research through LLAMA, particularly in the academic

exploration of large language models.

Llama 2: Open Foundation and Fine-Tuned Chat Models. https://arxiv.org/pdf/2307.09288

LLAMA can be customized for a variety of use cases, especially in research and

non-commercial projects where it demonstrates greater suitability.

Through architectural optimizations, LLAMA can achieve performance

similar to GPT-3 while using fewer computational resources.

Phi-3, Small but Strong,

https://azure.microsoft.com/en-us/products/phi-3

Despite the compact size of the Phi-3 model, it has demonstrated performance on

par with or even superior to larger models on various academic benchmarks in

the market.

Phi-3 adopts an architecture optimized specifically for mobile devices, with a

design that supports significant extension of the model's context length through

the LongRope system, thereby enhancing its ability to handle long-sequence data.

Phi-3's training method, inspired by children's learning, uses a "curriculum-

based" strategy. It starts with simplified data, gradually guiding the model to

grasp complex concepts.

Today’s lecture

• Language model in a narrow sense

(Probability theory, N-gram language model)

• Language model in broad sense

• More thoughts on language model

• LM (next word predict) is scalable

• LM does not need annotations

• LM is simple such that it is easily to adapt it many tasks

• LM could model human thoughts

• LM is efficient to capture knowledge (imagine use images to record
knowledge?)

• Humans do LM everyday (do next-word/ next-second prediction)

What can we learn from reconstructing the input?

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Overall, the value I got from the two hours watching it was the sum total of the

popcorn and the drink. The movie was ___.

The woman walked across the street, checking for traffic over ___ shoulder.

I went to the ocean to see the fish, turtles, seals, and _____.

Tutorial

https://platform.openai.com/docs/libraries/python-library

https://platform.openai.com/docs/libraries/python-library

Related resource:
❖ https://www.promptingguide.ai/zh
❖ https://www.youtube.com/watch?v=dOxUroR57xs&ab_channel=ElvisSaravia
❖ https://github.com/dair-ai/Prompt-Engineering-Guide

Prompt Engineering

https://www.promptingguide.ai/zh
https://www.youtube.com/watch?v=dOxUroR57xs&ab_channel=ElvisSaravia

Assignment 1: Using ChatGPT API

This will be released in the next week!

See updates in our BB system, WeChat and Emails.

Acknowledgement

• Princeton COS 484: Natural Language Processing.
Contextualized Word Embeddings. Fall 2019

• CS447: Natural Language Processing. Language Models.
http://courses.engr.illinois.edu/cs447

