

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

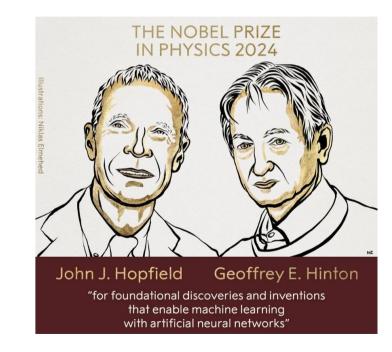
CSC6203: Large Language Model

Lecture 5: Efficiency in LLMs

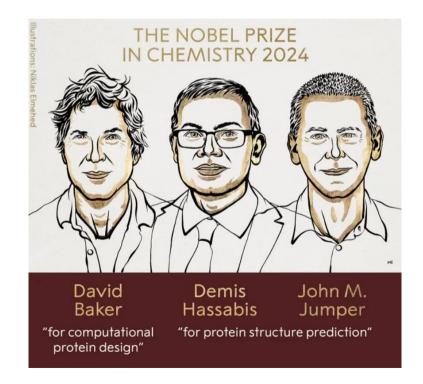
Fall 2024 Benyou Wang School of Data Science

Before the Lecture

Awarding to the DL funder Geoffrey Hinton



Awarding to the AlphaFold guys Demis & John



Nobel Prices go to Al guys

- Physics
- Chemistry

• It might be much faster that AI reshape (mostly) everything!

Blog from OpenAI: MLBench – Oct. 10th

- Machine Learning Bench
 - 75 real-world data science benchmark, e.g.,
 - OpenVaccine (COVID-19 mRNA疫苗降解预测)
 - 用于破译古卷轴Vesuvius Challenge

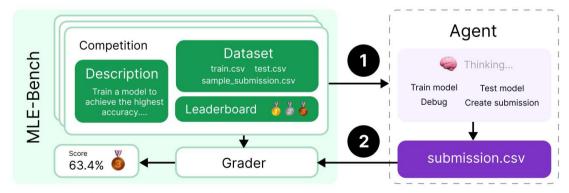


Figure 1: MLE-bench is an offline Kaggle competition environment for AI agents. Each competition has an associated description, dataset, and grading code. Submissions are graded locally and compared against real-world human attempts via the competition's leaderboard.

Benchmarking

Table 2: Results from Scaffolding and Models experiments. Each experiment is repeated with 3 seeds, except o1-preview (AIDE) and GPT-40 (AIDE) which use 16 and 36 seeds respectively. Scores represent the mean \pm one standard error of the mean.

Model	Made Submission (%)	Valid Submission (%)	Above Median (%)	Bronze (%)	Silver (%)	Gold (%)	Any Medal (%)
AIDE							
o1-preview	98.4 ± 0.4	82.8 ± 1.1	29.4 ± 1.3	3.4 ± 0.5	4.1 ± 0.6	9.4 ± 0.8	16.9 ± 1.1
gpt-40-2024-08-06	70.7 ± 0.9	54.9 ± 1.0	14.4 ± 0.7	1.6 ± 0.2	2.2 ± 0.3	5.0 ± 0.4	8.7 ± 0.5
llama-3.1-405b-instruct	46.3 ± 2.9	27.3 ± 2.6	6.7 ± 1.4	0.0 ± 0.0	1.3 ± 0.7	1.7 ± 0.7	3.0 ± 1.0
claude-3-5-sonnet-20240620	68.9 ± 3.1	51.1 ± 3.3	12.9 ± 2.2	0.9 ± 0.6	2.2 ± 1.0	4.4 ± 1.4	7.6 ± 1.8
MLAB							
gpt-4o-2024-08-06	65.6 ± 2.5	44.3 ± 2.6	1.9 ± 0.7	0.0 ± 0.0	0.0 ± 0.0	0.8 ± 0.5	0.8 ± 0.5
OpenHands							
gpt-4o-2024-08-06	59.1 ± 3.3	52.0 ± 3.3	7.1 ± 1.7	0.4 ± 0.4	1.3 ± 0.8	2.7 ± 1.1	4.4 ± 1.4

Recap

Overview

- LLM training
 - LLM Pretraining (including Word Tokenization)
 - Instruction Finetuning
 - Reinforcement Learning from Human Feedback
- LLM Evaluation

Tokenization

- Before Tokenization : This is tokenizing
- After Tokenization : This is tokenizing

Character-level tokenization? Word-level tokenization? Why Subword tokenization?

Pre-training

Example plain text (do not need supervised data, e.g. web and books)

The Large Language Model (LLM) represents a cutting-edge innovation in the field of artificial intelligence, harnessing vast amounts of textual data to provide nuanced responses and generate coherent narratives. As a descendant of OpenAI's renowned GPT series, the LLM showcases the rapid evolution of machine learning capabilities, embodying an unparalleled ability to comprehend, generate, and assist in myriad linguistic tasks. This technological marvel encapsulates the collective knowledge of countless sources and offers a tantalizing glimpse into the future of human-computer symbiosis, where the boundaries between natural and artificial intelligence become increasingly blurred.

Training with purely next word (token) prediction

Instruction fine-tuning (supervised fine-tuning)

Usually a triplet (instruction, input, output) -- need supervised data

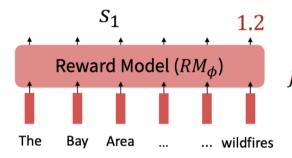
d to
help
뉵

Training with next word (token) prediction but usually only for the output part

Reinforcement Learning from Human AI Feedback

>

An earthquake hit San Francisco. There was minor property damage, but no injuries. A 4.2 magnitude earthquake hit San Francisco, resulting in massive damage. The Bay Area has good weather but is prone to earthquakes and wildfires.



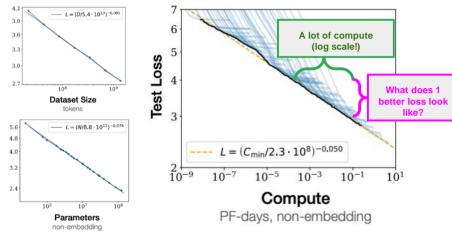
 $S_{3} \qquad S_{2}$ Bradley-Terry [1952] paired comparison model $J_{RM}(\phi) = -\mathbb{E}_{(s^{W},s^{l})\sim D} \left[\log \sigma(RM_{\phi}(s^{W}) - RM_{\phi}(s^{l})) \right]$ "winning" "losing" s^{W} should score sample sample higher than s^{l}

Today's main course: efficiency

又想马儿不吃草,也想马儿跑得快!

Why do we need efficiency?

LLMs follow Scaling Laws



Scaling laws for neural language models (2020).

Kaplan et al., 2020: Language modeling performance improves smoothly as we increase the model size, dataset size, and amount of compute for

training.

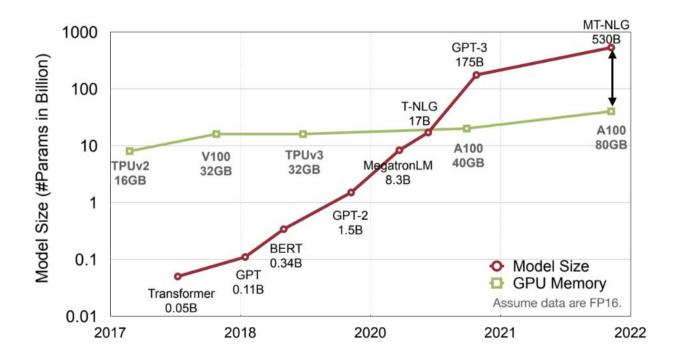
Jason's rephrase: You should expect to get a better language model if you scale up model size, dataset size, and amount of compute.

Note 1: "Within reasonable limits, performance depends very weakly on architectural hyperparameters such as depth and width."

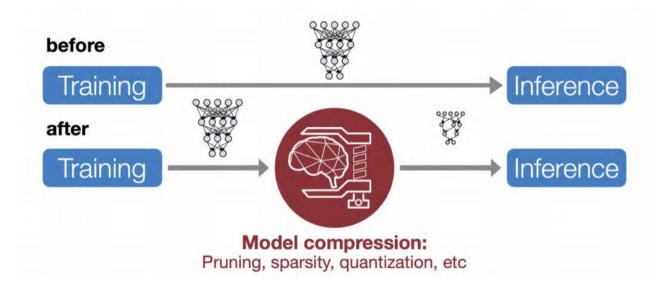
Note 2: By the way, data is unlabeled (self-supervised) data from the internet (e.g., common crawl).

Suggested further reading: Scaling laws for neural language models (2020). Training compute-optimal large language models (2022).

Model size of LMs is growing exponentially, yet the hardware...



Bridge the gap between the supply and demand of AI computing



Outline

• Efficiency within Transformer

- Long Attention (e.g., Quadratic Computing -> Leaning Computing, w.r.t. the Sequence Length)
- Sparsity (e.g., Mixture of Expert)
- Mamba (RNN-style Transformer)

• Efficiency beyond Transformer

- Quantization
- Pruning
- Knowledge Distillation

• Efficiency after LLMs

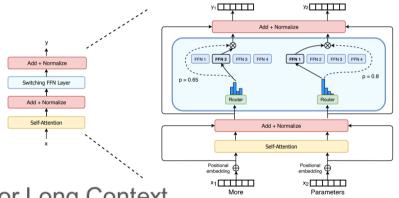
- Distributed Training
- Memory Saving
- Communication Costs

Others (e.g., parameter compression and parameter sharing)

• Parameter compression does not necessarily lead to faster inference.

Efficiency within Transformer

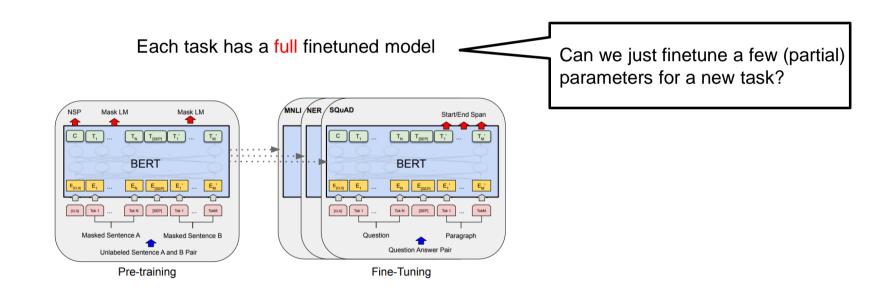
• Sparsity (e.g., Mixture of Expert [1])



- Efficiency for Long Context
 - Computing complexity of is $O(N^2D)$, which is quadratic to the sequence length

William Fedus, Barret Zoph, Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. https://arxiv.org/pdf/2101.03961.pdf

From time-efficiency vs. space-efficiency



Parameter-efficient finetuning

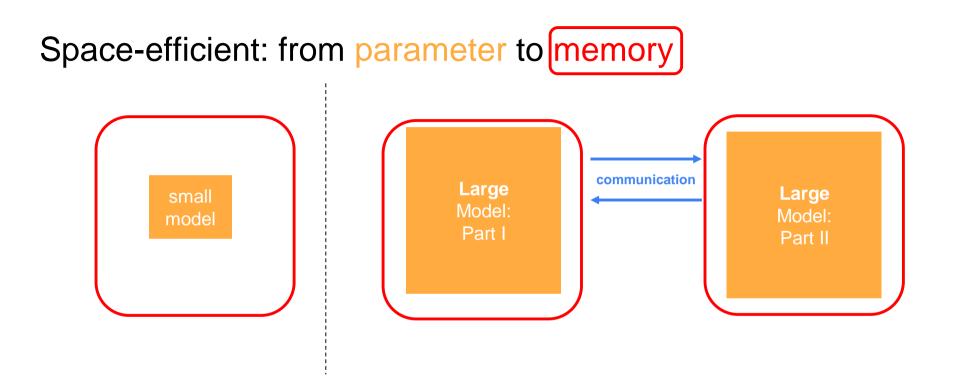
Efficiency beyond Transformer

Quantization "Low resolution" Pruning Removing weight connections Knowledge distillation Learning smaller models from big ones

https://rasa.com/blog/compressing-bert-for-faster-prediction-2/

Efficiency after LLMs

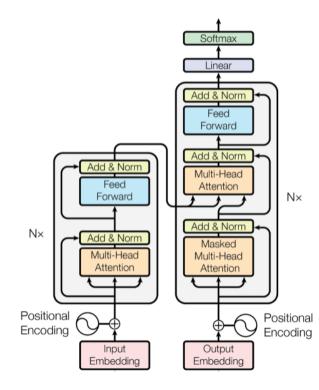
- All Efficiency methods before LLMs (within/beyond transformer)
- + Communication costs
- + Memory saving
- Speculative decoding (only for autoregressive decoding)



In LLM era, a whole model might not be stored in a GPU memory, communication costs may be the bottleneck!

Efficiency within Transformers

Recap: Transformers



- Each encoder block has two sub-layers:
 - The first is a **multi-head self-attention** mechanism.
 - The second is a position-wise **fully connected feed**forward network.
- Each decoder block has an additional third sub-layer:
 - The third is a multi-head attention over the output of the encoder stack.
- A residual connection is added around each of the two sub-layers, followed by layer normalization:

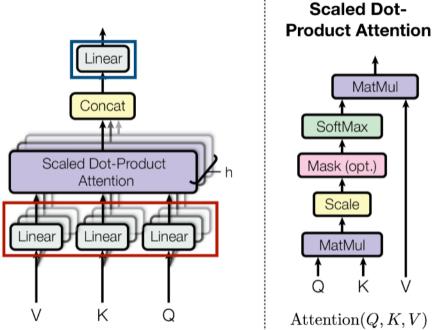
LayerNorm(x + Sublayer(x))

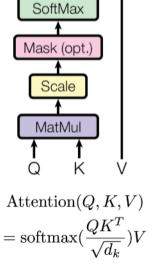
• The decoder generates the output sequence of symbols one element at a time in an **auto-regressive** manner.

Recap: Transformers - Multi-head Self-Attention (MHSA)

- **Project** Q, K and V with h **different**, learned linear projections.
- Perform the scaled dot-product attention function on each of these projected versions of Q, K and V in parallel.
- **Concatenate** the output values.
- **Project** the output values again, resulting in ٠ the final values.

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$





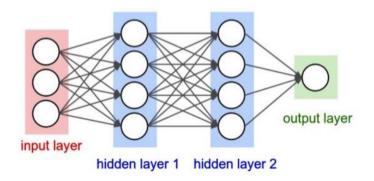
MatMul

Recap: Transformers - Feed-Forward Network (FFN)

- Each block in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position **separately** and **identically**.
- This consists of two linear transformations with a ReLU activation in between.

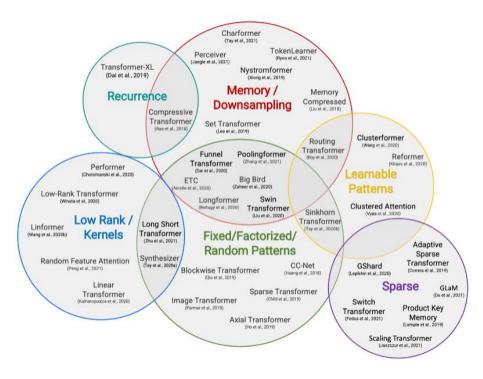
 $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

• The middle hidden size is usually larger than and input and output size (inverted bottleneck).



Model	#L	#H	d _{model}	LR	Batch
125M	12	12	768	$6.0e{-4}$	0.5M
350M	24	16	1024	$3.0e{-4}$	0.5M
1.3B	24	32	2048	$2.0e{-4}$	1M
2.7B	32	32	2560	$1.6e{-4}$	1 M
6.7B	32	32	4096	$1.2e{-4}$	2M
13B	40	40	5120	$1.0e{-4}$	4M
30B	48	56	7168	$1.0e{-4}$	4M
66B	64	72	9216	$0.8e{-4}$	2M
175B	96	96	12288	$1.2e{-4}$	2M

Efficient Transformers



Efficient Transformers: A Survey [Tay et al., 2020]

Could we make it efficient and also **maintain the performance** ?

马儿可以不吃草,也跑得快吗?

Motivation: Parameter redundancy existed

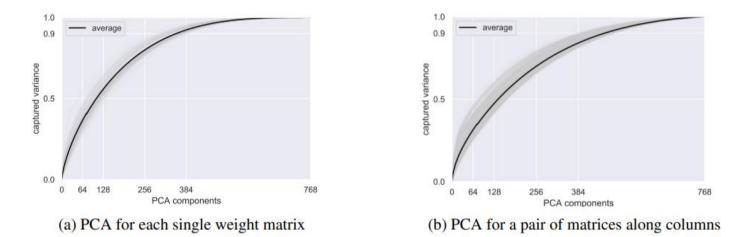


Figure 1: PCA for existing weight block matrices in BERT-base. We got nearly similar results in Fig. 5 for paired matrices along rows and columns, as shown in App. C.

Benyou Wang, Yuxin Ren, Lifeng Shang, Xin Jiang, Qun Liu. Exploring extreme parameter compression for pre-trained language models. ICLR 2022.

Decomposability (可分解性)

A computing module f is decomposable if its sub-components {g1, g2,…gH} could be independently calculated without interactions: f(x) = δ(g1(x), g2(x),…, gH(x)). Usually, δ is a simple operation that has negligible computing cost compared to g

Decomposability might lead to redundancy, as it has backup modules.

Self-attention is decomposable

• As there exist multiple heads

$$\operatorname{Att}_{h}(\mathbf{X}) = \operatorname{Softmax}(\frac{1}{\sqrt{d}}\mathbf{X}\mathbf{W}_{h}^{Q}\mathbf{W}_{h}^{K^{T}}\mathbf{X}^{T})\mathbf{X}\mathbf{W}_{h}^{V}\mathbf{W}_{h}^{O^{T}}$$

Feed-forward network is also decomposable

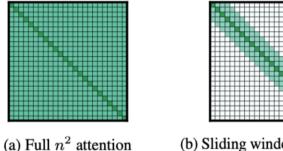
• It performs like a multi-head mechanism

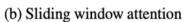
$$FFN(\mathbf{X}) = \sum_{h=1}^{4D} GeLU(\mathbf{X} \mathbf{W}_{\cdot,h}^{In} + b_h^{In}) \mathbf{W}_{h,\cdot}^{Out} + b^{Out}$$

Efficient Transformers - efficient Attention make attention **sparse**!

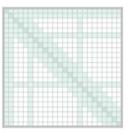
Sparse Attention - LongFormer

Local Attention + Global Attention





(c) Dilated sliding window

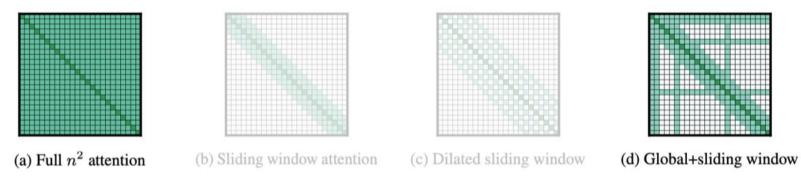


(d) Global+sliding window

- Attention with **sliding window** (analogous to CNNs): ٠
 - A fixed-size window attention surrounding each token.
 - The complexity is reduced from $O(N^2)$ to $O(N \times W)$, where W is the window size. ٠
- Attention with **dilated sliding window** (analogous to dilated CNNs): ٠
 - Dilate the sliding window with gaps of size dilation D. ٠
 - The receptive field is enlarged from W to **W x D**, with the same complexity. ٠

Sparse Attention - LongFormer

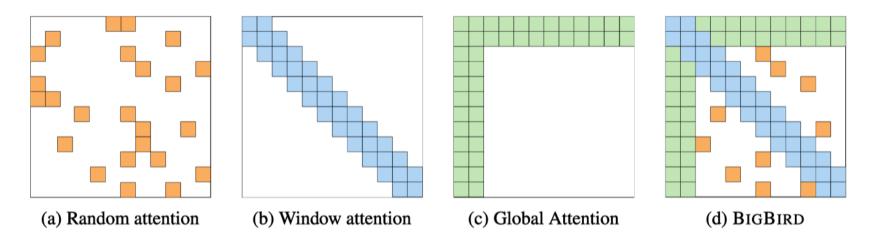
Local Attention + Global Attention



- Global attention added on a few pre-selected input locations:
 - Classification: The special token ([CLS]), aggregating the whole sequence.
 - QA: All question tokens, allowing the model to compare the question with the document.
- Global attention is applied symmetrically:
 - A token with a global attention attends to all tokens across the sequence, and all tokens in the sequence attend to it.

Sparse Attention - Big Bird

Random Attention + Local Attention + Global Attention

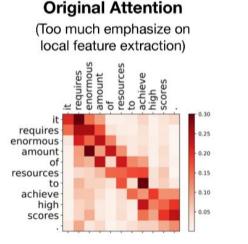


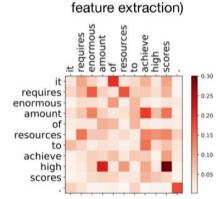
- Random sparse attention:
 - Each query attends over r random number of keys: *i.e.* $A(i, \cdot) = 1$ for r randomly chosen keys.
 - Information can flow fast between any pair of nodes (rapid mixing time for random walks).

Sparse Attention - Lite Transformer

Local Convolution + Global Attention

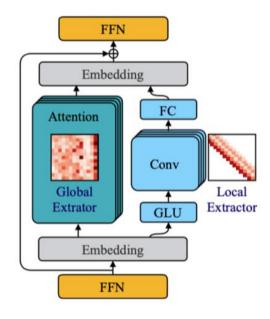
- Long-Short Range Attention (LSRA):
 - Convolution: Efficiently extract the local features.
 - Attention: Tailored for global feature extraction.





Attention in LSRA

(Dedicated for global

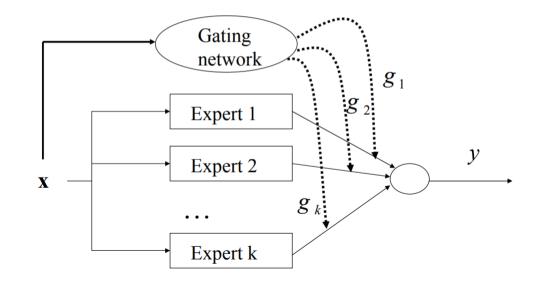


Mixture of Expert (MoE) - efficient FFNs

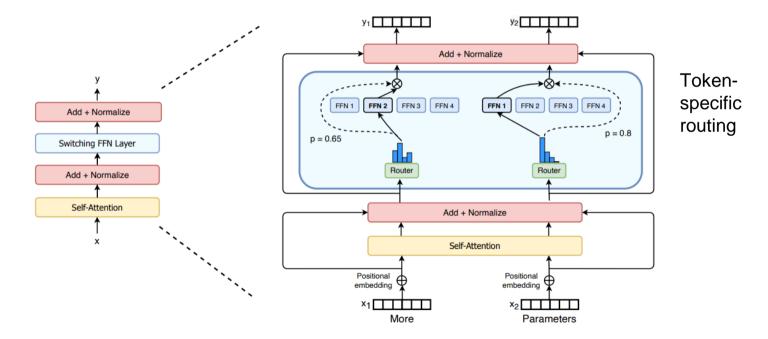
Mixture of Expert

• Gating network : decides what expert to use

 $g_1, g_2, \dots g_k$ - gating functions



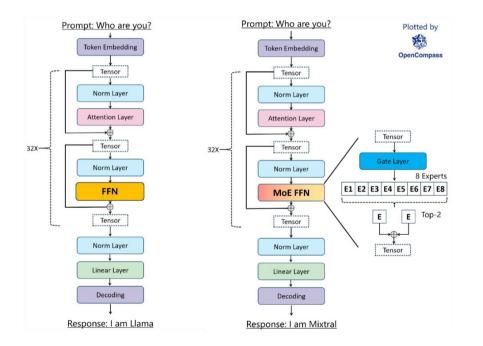
MOE in Transformer



William Fedus, Barret Zoph, Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. https://arxiv.org/pdf/2101.03961.pdf

Mixture of Expert

• Model Architectures

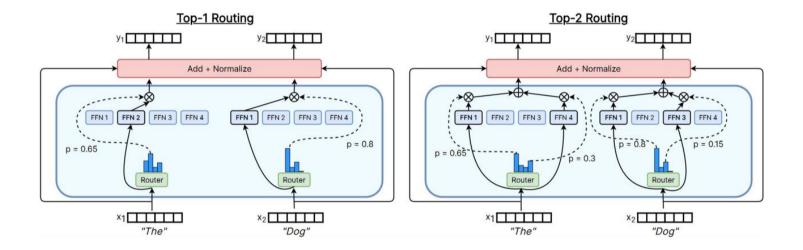


Key points:

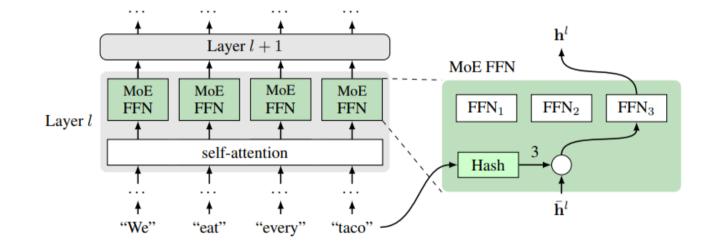
Activate different experts parameters for each input token.

Sparse activation. Not all parameters are activated.

Routing Algorithms



An example of Hash



Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston. Hash Layers For Large Sparse Models. https://arxiv.org/pdf/2106.04426.pdf

Random hash also works

Model	Hashing Type	Valid PPL	Test PPL
Baseline Transformer	-	24.90	24.96
Hash Layer 1x64	Balanced assignment	23.16	23.23
Hash Layer 1x64	Fixed random assignment	23.22	23.27
Hash Layer 1x64	Token clustering (using Baseline Transformer)	23.90	23.99
Hash Layer 1x64	Dispersed Hash (within token clusters)	23.17	23.22
Hash Layer 1x64	Hash on position	25.07	25.14
Hash Layer 1x64	Bigrams	24.19	24.28
Hash Layer 1x64	Previous token	24.16	24.22
Hash Layer 1x64	Future token predictions (using Transformer Baseline)	25.02	25.09
Hash Layer 1x64	Future token (Oracle)	1.97	1.97
Hash Layer 5x16	Same hash per layer (balance assignment)	23.74	23.81
Hash Layer 5x16	Different Hash per layer	23.21	23.27

Table 3: Different Hash Layering Methods on pushshift.io Reddit.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston. Hash Layers For Large Sparse Models. https://arxiv.org/pdf/2106.04426.pdf

MoE Models

- Open-source (above the arrow).
- Private models (under the arrow).

MoE Design

What should we care when designing a MoE?

Network types	FFN, Attention
Fine-grained experts	64 experts/128 experts/
Shared experts	Isolated experts
Activation Function	ReLU/GEGLU/SwiGLU
MoE frequency	Every two layer/Each layer/
Training auxiliary loss	Auxiliary loss/Z-loss/

Fine-grained and Shared Experts

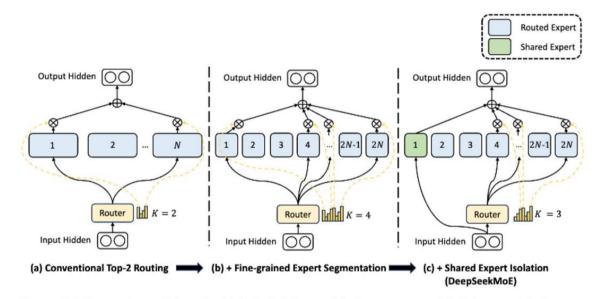


Figure 2 | Illustration of DeepSeekMoE. Subfigure (a) showcases an MoE layer with the conventional top-2 routing strategy. Subfigure (b) illustrates the fine-grained expert segmentation strategy. Subsequently, subfigure (c) demonstrates the integration of the shared expert isolation strategy, constituting the complete DeepSeekMoE architecture. It is noteworthy that across these three architectures, the number of expert parameters and computational costs remain constant.

MoE Experts Design

Reference	Models	Expert Count (Activ./Total)	d _{model}	d_{ffn}	d _{expert}	#L	#H	dhead	Placement Frequency	Activation Function	Share Exper Count
	600B	2/2048	1024	8192	dffn	36	16	128	1/2	ReLU	0
GShard [86] (2020)	200B	2/2048	1024	8192	dffn	12	16	128	1/2	ReLU	0
	150B	2/512	1024	8192	dffn	36	16	128	1/2	ReLU	0
	37B	2/128	1024	8192	dffn	36	16	128	1/2	ReLU	0
	7B	1/128	768	2048	dffn	12	12	64	1/2	GEGLU	0
Switch [49]	26B	1/128	1024	2816	difn	24	16	64	1/2	GEGLU	0
(2021)	395B	1/64	4096	10240	diin	24	64	64	1/2	GEGLU	0
	1571B	1/2048	2080	6144	dffn	15	32	64	1	ReLU	0
	0.1B/1.9B	2/64	768	3072	dffn	12	12	64	1/2	GEGLU	0
GLaM [44]	1.7B/27B	2/64	2048	8192	difn	24	16	128	1/2	GEGLU	0
(2021)	8B/143B	2/64	4096	16384	diin	32	32	128	1/2	GEGLU	0
	64B/1.2T	2/64	8192	32768	diin	64	128	128	1/2	GEGLU	0
	350M/13B	2/128	1024	4dmodel	dffn	24	16	64	1/2	GeLU	0
DeepSpeed-MoE [121]	1.3B/52B	2/128	2048	4dmodel	dern	24	16	128	1/2	GeLU	0
(2022)	PR-350M/4B	2/32-2/64	1024	4dmodel	diin	24	16	64	1/2, 10L-32E, 2L-64E	GeLU	1
	PR-1.3B/31B	2/64-2/128	2048	4dmodel	din	24	16	128	1/2, 10L-64E, 2L-128E	GeLU	1
ST-MoE [197]	0.8B/4.1B	2/32	1024	2816	dffn	27	16	64	1/4, add extra FFN	GEGLU	0
(2022)	32B/269B	2/64	5120	20480	dffn	27	64	128	1/4, add extra FFN	GEGLU	0
Mixtral [74] (2023)	13B/47B	2/8	4096	14336	dffn	32	32	128	1	SwiGLU	0
	39B/141B	2/8	6144	16384	dffn	56	48	128	1	SwiGLU	0
	3.0B/6.7B	2/16	4096	11008	688	32	32	128	1	SwiGLU	0
LLAMA-MoE [149] (2023)	3.5B/6.7B	4/16	4096	11008	688	32	32	128	1	SwiGLU	0
	3.5B/6.7B	2/8	4096	11008	1376	32	32	128	1	SwiGLU	0
	0.24B/1.89B	8/64	1280	-	$\frac{1}{4}d_{ffn}$	9	10	128	1	SwiGLU	1
DeepSeekMoE [30] (2024)	2.8B/16.4B	8/66	2048	10944	1408	28	16	128	1, except 1st layer	SwiGLU	2
(2024)	22B/145B	16/132	4096	-	$\frac{1}{8}d_{ffn}$	62	32	128	1, except 1st layer	SwiGLU	4
	339M/650M	2/16	768	3072	dffn	12	12	64	1/4	SwiGLU	1
OpenMoE [172] (2024)	2.6B/8.7B	2/32	2048	8192	diin	24	24	128	1/6	SwiGLU	1
(2024)	6.8B/34B	2/32	3072	12288	dffn	32	24	128	1/4	SwiGLU	1
Qwen1.5-MoE [151] (2024)	2.7B/14.3B	8/64	2048	5632	1408	24	16	128	1	SwiGLU	4
DBRX [34] (2024)	36B/132B	4/16	6144	10752	dffn	40	48	128	1	SwiGLU	0
Jamba [94] (2024)	12B/52B	2/16	4096	14336	d_{ffn}	32	32	128	1/2, 1:7 Attention:Mamba	SwiGLU	0
Skywork-MoE [154] (2024)	22B/146B	2/16	4608	12288	d_{ffn}	52	36	128	1	SwiGLU	0
Yuan 2.0-M32 [166] (2024)	3.7B/40B	2/32	2048	8192	d_{ffn}	24	16	256	1	SwiGLU	0

- Most recent models place MoE each layer.
- Some of recent models apply Shared experts.

Auxiliary Loss

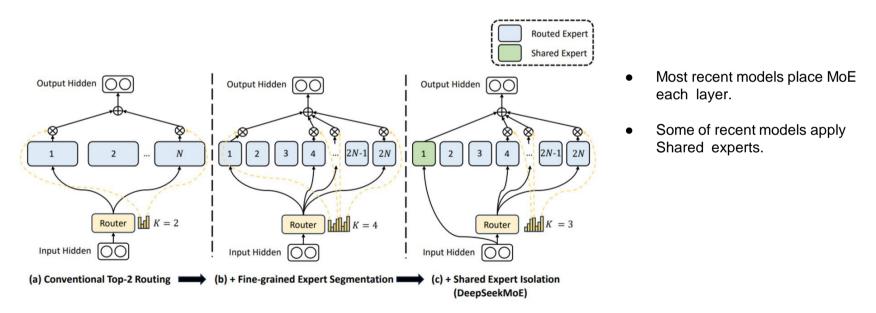
Training with different auxiliary loss:

Reference	Auxiliary Loss	Coefficient
Shazeer et al.[135], <u>V-MoE</u> [128] GShard[86], Switch-T[49], GLaM[44], Mixtral-8x7B[74], DBRX[34], Jamba[94], <u>DeepSeekMoE</u> [30], <u>DeepSeek-V2</u> [36], Skywork-MoE[154]	$L_{importance} + L_{load}$ L_{aux}	$w_{importance} = 0.1, w_{load} = 0.1$ $w_{aux} = 0.01$
ST-MoE[197], OpenMoE[172], MoA[182], JetMoE [139]	$L_{aux} + L_z$	$w_{aux} = 0.01, w_z = 0.001$
Mod-Squad[21], Moduleformer[140], DS-MoE[117]	L_{MI}	$w_{MI} = 0.001$

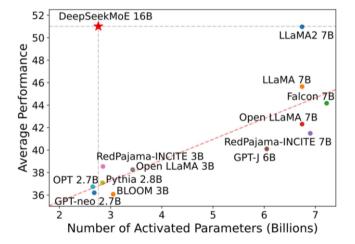
- Importance loss: encourages all experts to have equal importance
- Load loss: ensure balanced loads
- Auxiliary loss: mitigating load balance losses
- Z-loss: improving training stability by penalizing large logits
- MI-loss: mutual information (MI) between experts and tasks to build task-expert alignment

Training MoE - Deepseek (example)

Deepseek-MoE 16B, total 16.4B parameters, 2.8B activated parameters. Each MoE layer consists of 2 shared experts and 64 routed experts (select 6 experts).



Training MoE - Deepseek (example)



Metric	# Shot	DeepSeek 7B (Dense)	DeepSeekMoE 16B
# Total Params	N/A	6.9B	16.4B
# Activated Params	N/A	6.9B	2.8B
FLOPs per 4K Tokens	N/A	183.5T	74.4T
# Training Tokens	N/A	2T	2T
Pile (BPB)	N/A	0.75	0.74
HellaSwag (Acc.)	0-shot	75.4	77.1
PIQA (Acc.)	0-shot	79.2	80.2
ARC-easy (Acc.)	0-shot	67.9	68.1
ARC-challenge (Acc.)	0-shot	48.1	49.8
RACE-middle (Acc.)	5-shot	63.2	61.9
RACE-high (Acc.)	5-shot	46.5	46.4
DROP (EM)	1-shot	34.9	32.9
GSM8K (EM)	8-shot	17.4	18.8
MATH (EM)	4-shot	3.3	4.3
HumanEval (Pass@1)	0-shot	26.2	26.8
MBPP (Pass@1)	3-shot	39.0	39.2
TriviaQA (EM)	5-shot	59.7	64.8
NaturalQuestions (EM)	5-shot	22.2	25.5
MMLU (Acc.)	5-shot	48.2	45.0
WinoGrande (Acc.)	0-shot	70.5	70.2
CLUEWSC (EM)	5-shot	73.1	72.1
CEval (Acc.)	5-shot	45.0	40.6
CMMLU (Acc.)	5-shot	47.2	42.5
CHID (Acc.)	0-shot	89.3	89.4

DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

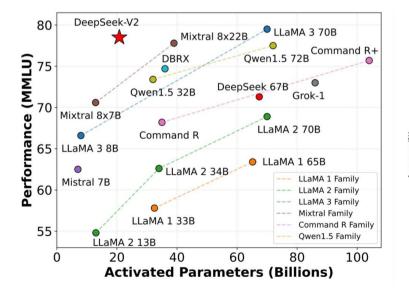
Training MoE - Deepseek (example)

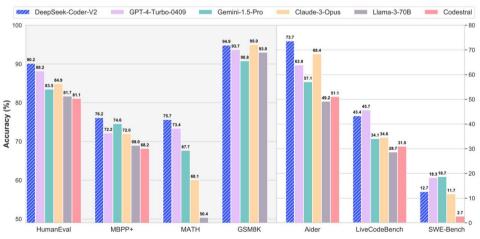
Deepseek-V2

236B total parameters, 21B are activated.2 shared experts and 160 routed experts (6 select).

Deepseek-Coder-V2

Continue pretraining from an intermediate checkpoint of Deepseek-V2 (4.2T) and further train 6T. Total 10.2T tokens.





Sparse Upcycling - Qwen-MoE

Qwen1.5-MoE-A2.7B (Mar, 2024)

Upcycled from Qwen-1.8B, 14.3B parameters in total and 2.7B activated parameters.

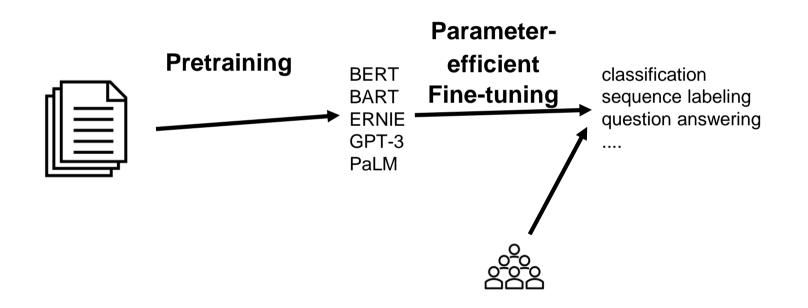
- Fine-grained experts (total 64 experts)
- use shared (4 experts) and routing experts (60 experts, choose 4)

Model	MMLU	GSM8K	HumanEval	Multilingual	MT-Bench	
Mistral-7B	64.1	47.5	27.4	40.0	7.60	
Gemma-7B	64.6	50.9	32.3	-	-	A tr
Qwen1.5-7B	61.0	62.5	36.0	45.2	7.60	
DeepSeekMoE 16B	45.0	18.8	26.8		6.93	
Qwen1.5-MoE-A2.7B	62.5	61.5	34.2	40.8	7.17	

A remarkable reduction of 75% in raining

Parameter-efficient Fine-tuning

From Fine-tuning to Parameter-efficient Fine-tuning

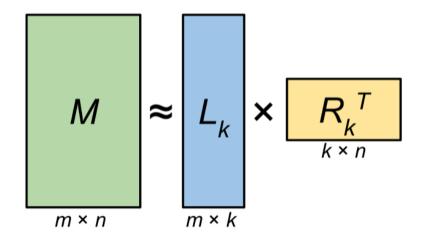


Which to implement the efficient finetuning

- Globally
 - LoRA : Low-rank matrix
- Locally
 - Adapter: a newly-added later
 - Soft Prompt : "some newly-added fake tokens"
 - Expert in MOE
 - o

Low-Rank Approximations (LoRA)

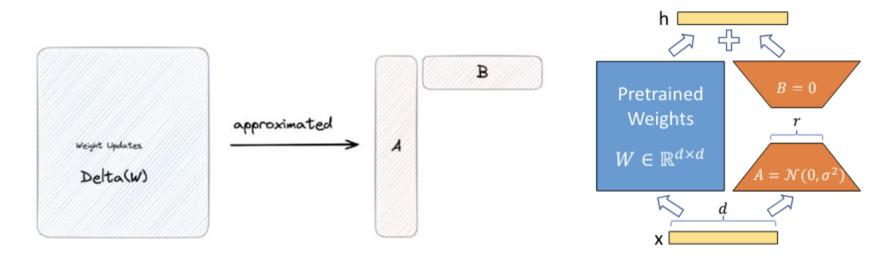
- Improve efficiency by leveraging **low-rank** approximations of the self-attention matrix.
- The key idea is to assume **low-rank structure** in the N×N matrix.



Baseline Full Fine-tuning

Baseline Full Fine Tuning

LoRA Tuning

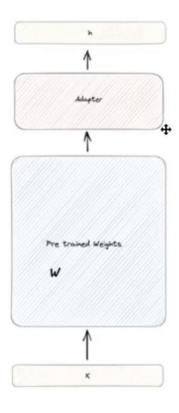


For a pre-trained weights W_0, we approx Delta(w) by B and A:

 $h = W_0 x + \Delta W x = W_0 x + BAx$ where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, and the rank $r \ll \min(d, k)$

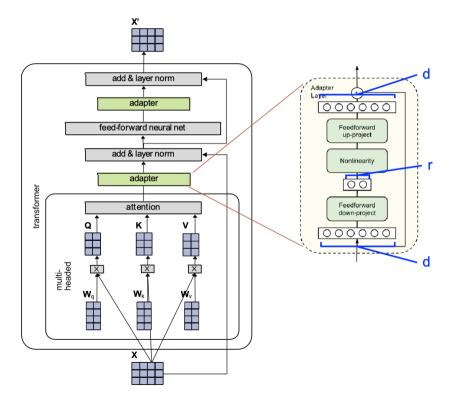
During Training, we only compute gradient w.r.t. Delta(W)

Other Parameter-efficient Tunings: Adapter Tuning



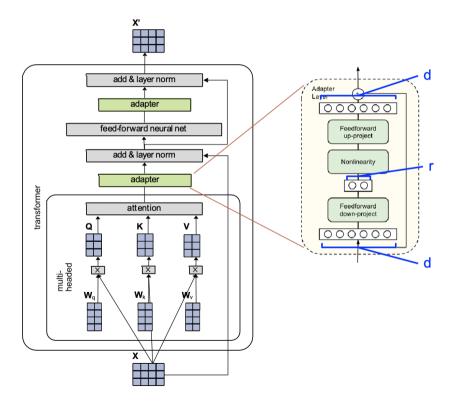
We add an adapter module after pre-trained weights W. And during training, we only compute gradient w.r.t. the adapter

Other Parameter-efficient Tunings: Adapter Tuning



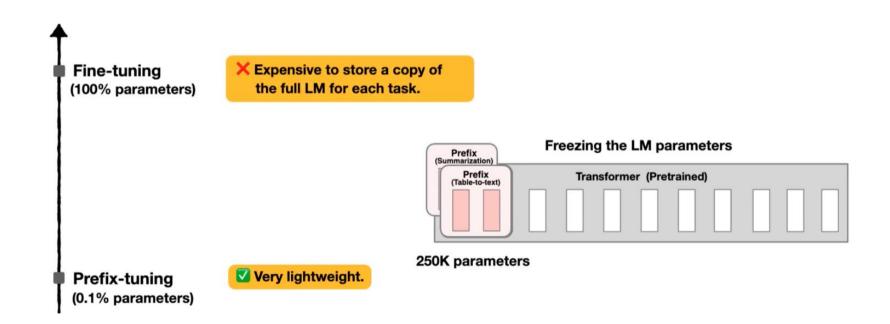
- An adapter layer is simply a feedforward neural network with one hidden layer, and a residual connection.
- For input dimension, d, the adapter layer also has output dimension d, but bottlenecks to a lower dimension m in the middle.

Other Parameter-efficient Tunings: Adapter Tuning



- In practice, r is chosen s.t. r << d and the adapter layers contain only 0.5% – 8% of the total parameters.
- When added to a deep neural network (e.g. Transformer) all the other parameters of the pretrained model are kept fixed, and only the adapter layer parameters are fine-tuned.

Other Parameter-efficient Tunings: Prefix-Tuning

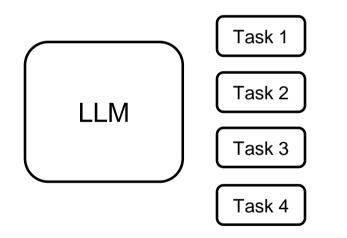


We prepend a prefix matrix in each transformer layer. And during Training, we only compute gradient w.r.t. Prefix parameters

Parameter-efficient Fine-tuning - modulization

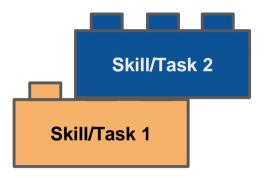
Parameter-efficient Fine-tuning

parameter-efficient modules

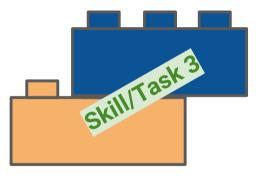


Modularity and Compositionality?

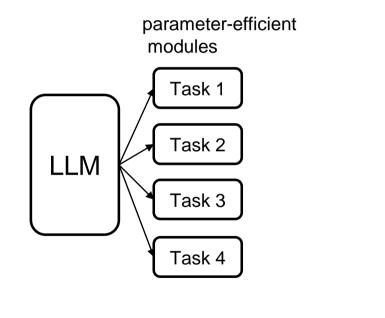
Modularity and Compositionality?

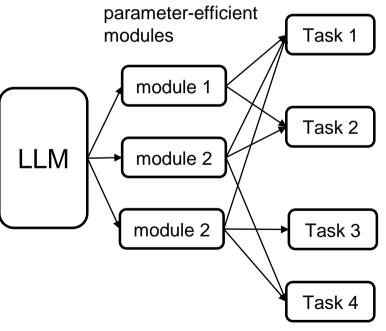


Modularity and Compositionality?



Parameter-efficient Fine-tuning

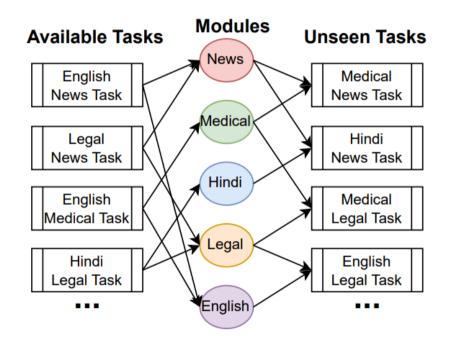




One task, one module

One task, composed modules

Modular Retrieval

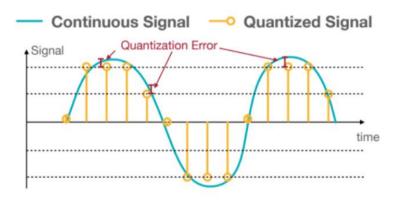


Juhao Liang , Chen Zhang , Zhengyang Tang , Jie Fu , Dawei Song , **Benyou Wang**. Modular Retrieval for Generalization and Interpretation. https://arxiv.org/pdf/2303.13419.pdf

Efficiency Beyond Transformers - Quantization

Quantization - What is Quantization?

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.



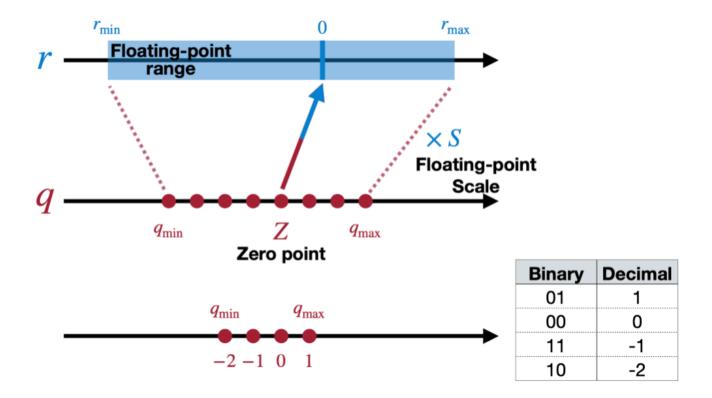
16-Color Image

Images are in the public domain. "Palettization"

The difference between an input value and its quantized value is referred to as quantization error.

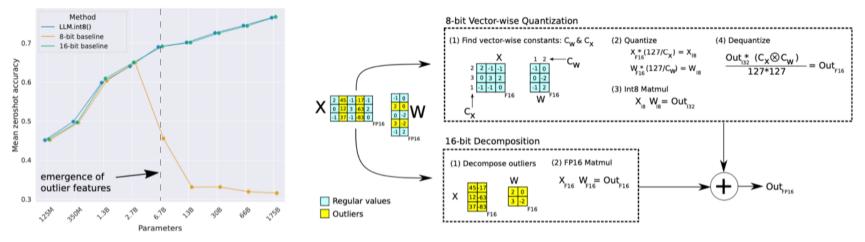
Quantization [Wikipedia]

Quantization



Quantization - LLM.int8()

Mixed-Precision Decomposition

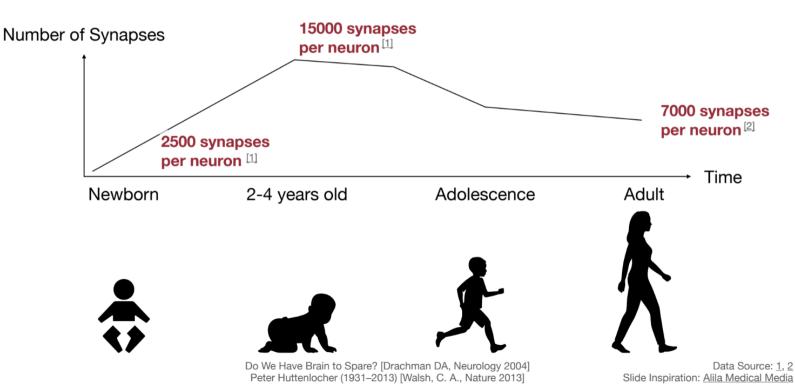


- Motivation: Transformers have outlier features that have large values (especially large models).
 - They occur in particular hidden dimensions, leading to large quantization error.
- Key idea: Separate outlier features into a separate FP16 MM, quantize the other values to Int8.
 - Outlier: At least one feature dimension with a magnitude larger than the threshold (6).
 - Token-wise scale factor (for X) and (output) channel-wise scale factor (for W).

Efficiency Beyond Transformers - Pruning

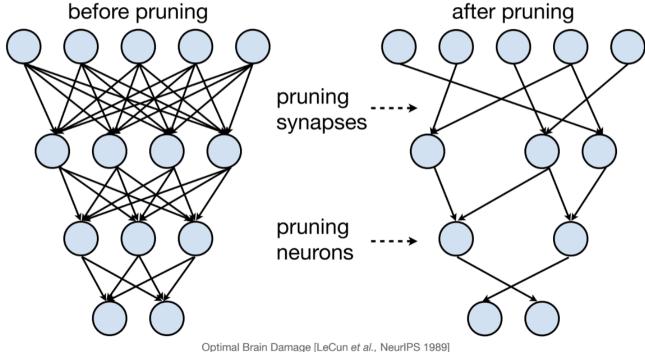
Neural Network Pruning - What is Pruning?

Pruning happens in human brains (synapse 突触 vs. neuron神经元)



Neural Network Pruning - What is Pruning?

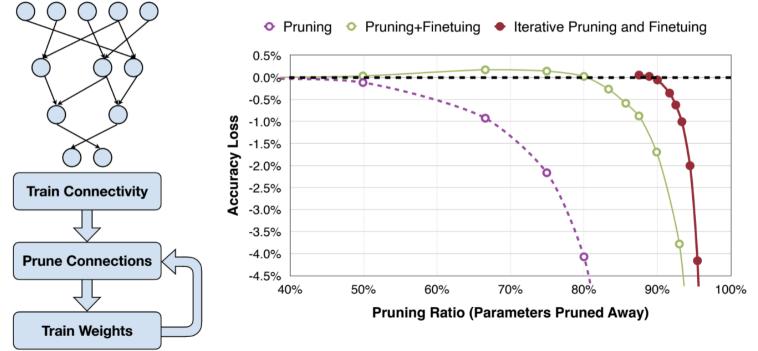
Make neural network smaller by removing synapses and neurons



Learning Both Weights and Connections for Efficient Neural Network [Han *et al.*, NeurIPS 2015]

Neural Network Pruning - What is Pruning?

Make neural network smaller by removing synapses and neurons



Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

Neural Network Pruning - How should we formulate pruning

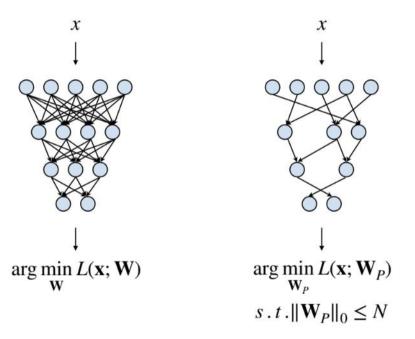
In general, we could formulate the pruning as follows:

 $\arg\min_{\mathbf{W}_P} L(\mathbf{x}; \mathbf{W}_P)$

subject to

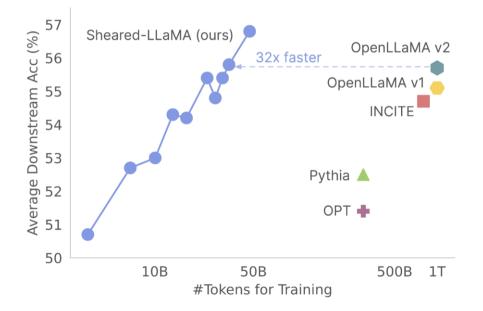
 $\|\mathbf{W}_p\|_0 < N$

- L represents the objective function for neural network training;
- x is input, W is original weights, W_P is pruned weights;
- $\|\mathbf{W}_p\|_0$ calculates the #nonzeros in W_p , and N is the target #nonzeros.



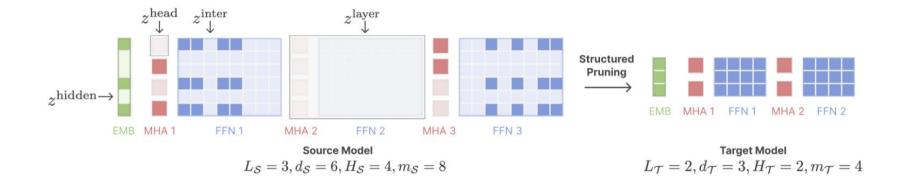
LLM-Shearing: Accelerating via Structured Pruning

An efficient method of constructing LLMs by first pruning a larger existing model and then continually pre-training it.



- Sheared-LLaMA-2.7B achieves better performance than existing open-source models of the same scale with 3% (1/32) of the compute.
- The trajectory shows a compelling case that if we invest more tokens and compute, the capability of Sheared-LLaMA can be further improved.

LLM-Shearing: Accelerating via Structured Pruning



1. Target Structure Pruning: prune a source model to to a pre-specified target architecture (e.g., an existing model's config), and meanwhile maximizing the pruned model's performance

LLM-Shearing: Accelerating via Structured Pruning

Algorithm 1: Dynamic Batch Loading

Require: Training data of k domains D_1, D_2, \dots, D_k , validation data $D_1^{\text{val}}, D_2^{\text{val}}, \dots, D_k^{\text{val}}$, initial data loading weights $w_0 \in \mathbb{R}^k$, reference loss $\ell_{\text{ref}} \in \mathbb{R}^k$, LM loss function \mathcal{L} or pruning loss $\mathcal{L}_{\text{prune}}$, training steps T, evaluation interval m, model parameters θ (θ, z, ϕ, λ for pruning)

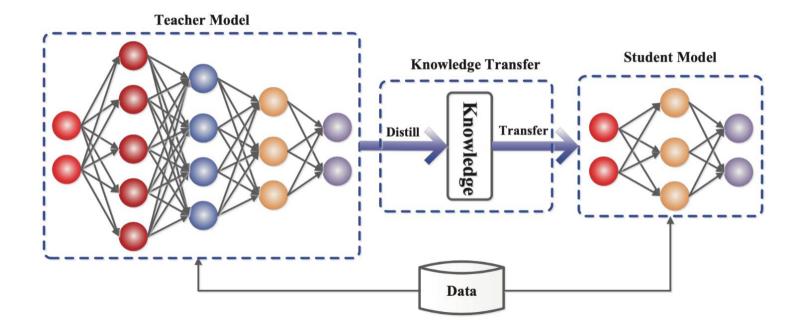
for $t = 1, \cdots, T$ do if t mod m = 0 then $\ell_t[i] \leftarrow \mathcal{L}(\theta, z, D_i^{\text{val}})$ if pruning else $\mathcal{L}(\theta, D_i^{\text{val}})$ $\Delta_t^{[i]} \leftarrow \max \left\{ \ell_t^{[i]} - \ell_{\mathrm{ref}}^{[i]}[i], 0 \right\}$ ▷ Calculate loss difference $w_t \leftarrow \text{UpdateWeight}(w_{t-m}, \Delta_t)$ ▷ Update data loading proportion end Sample a batch of data \mathcal{B} from D_1, D_2, \cdots, D_k with proportion w_t ; if *pruning* then Update θ, z, ϕ, λ with $\mathcal{L}_{\text{prune}}(\theta, z, \phi, \lambda)$ on \mathcal{B} else Update θ with $\mathcal{L}(\theta, \mathcal{B})$ end end **Subroutine** UpdateWeight (w, Δ)

 $\begin{vmatrix} \alpha \leftarrow w \cdot \exp(\Delta) \\ w \leftarrow \frac{\alpha}{\sum_i \alpha[i]} \text{ return } w \end{vmatrix}$ return θ Calculate the unnormalized weights
 Renormalize the data loading proportion

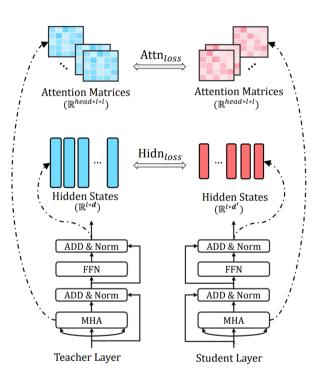
 Dynamic batch loading:
 Pruning results in varying information retainment across domains.
 Concretely, they load more data for domains that recover slow, and the loading proportion is dynamically decided on the fly.

Efficiency Beyond Transformers - Distillation

Framework of knowledge distillation



TinyBERT



In transformer, it would be nice to learn attentions from teacher model.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang and Qun Liu. TinyBERT: Distilling BERT for Natural Language Understanding. <u>https://arxiv.org/pdf/1909.10351.pdf</u>

Benefits of KD compared to directly training

- More fine grained supervision (learn on every layers)
- Making use of unannotated data (teacher model provide supervision)
 - Data augmentation is useful.

A few work of KD in LLMs

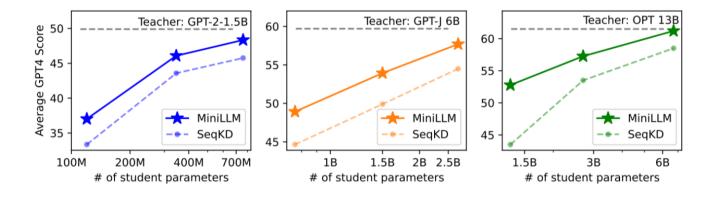


Figure 1: The comparison of MINILLM with the sequence-level KD (SeqKD) in terms of the average GPT-4 feedback score on our evaluation sets. Left: GPT-2-1.5B as the teacher and GPT-2 125M, 340M, 760M as the students. Middle: GPT-J 6B as the teacher and GPT-2 760M, 1.5B, GPT-*Neo* 2.7B as the students. Right: OPT 13B as the teacher and OPT 1.3B, 2.7B, 6.7B as the students.

This seems not that working in LLMs. More investigation is needed

Yuxian Gu, Li Dong, Furu Wei, Minlie Huang. Knowledge Distillation of Large Language Models. https://arxiv.org/pdf/2306.08543.pdf

Memory-efficiency training

Models are getting larger and larger

LLMs take much longer time to train!

Boss: What did you do last month?

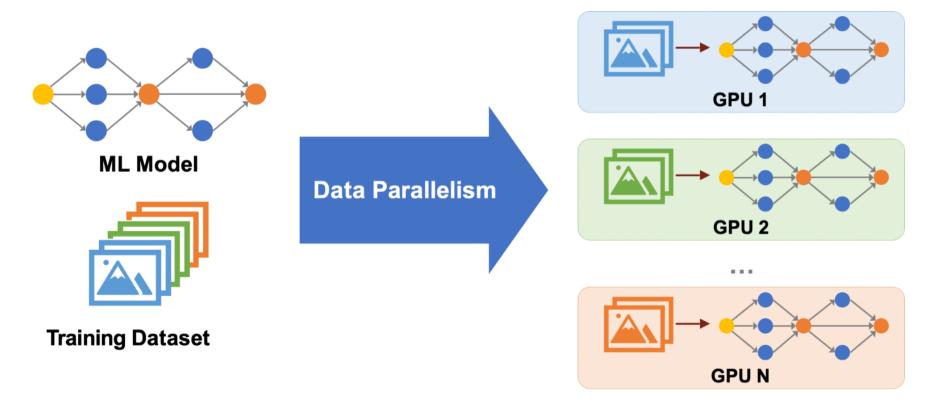
You: Trained the model for one epoch.

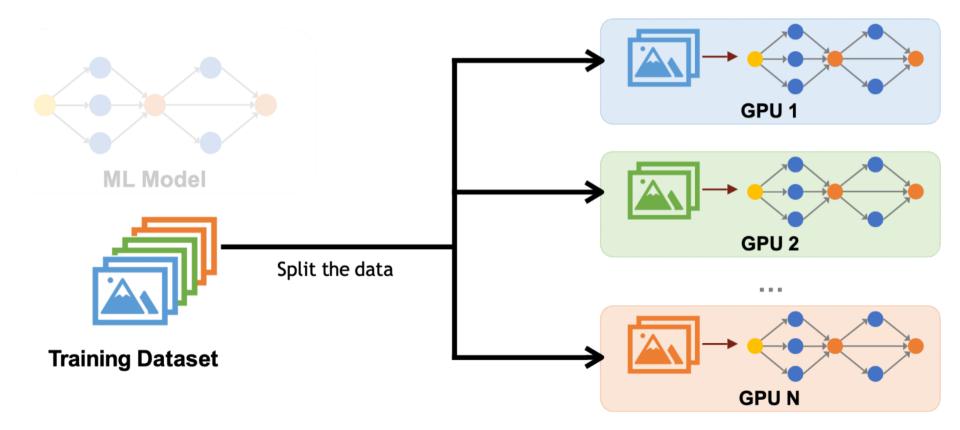
Boss: Umm, fine, what is your plan for next month?

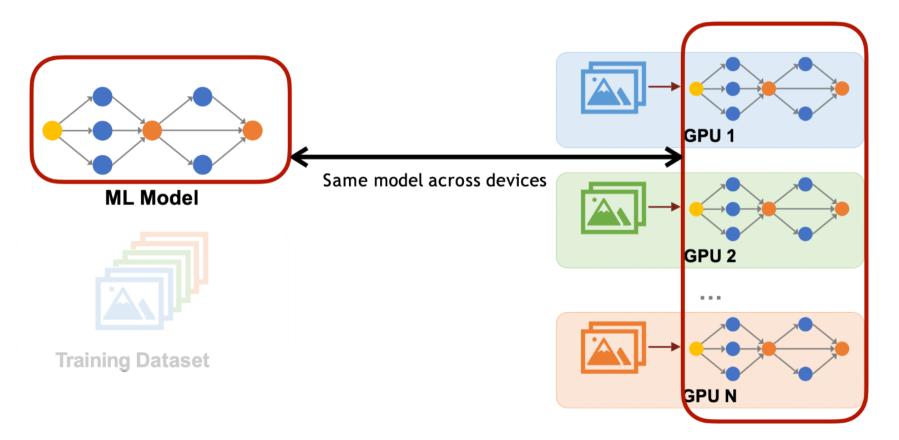
You: Train... train the model for one more epoch?

Distributed Training is almost Necessary for every LLMs!

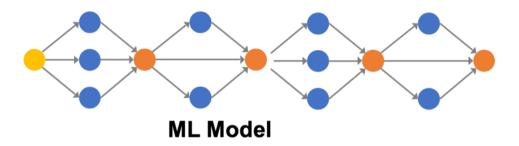
- Developers / Researchers' time are more valuable than hardware .
- If a training takes 10 GPU days
 - Parallelize with distributed training
 - 1024 GPUs can finish in 14 minutes (ideally)!
- The develop and research cycle will be greatly boosted

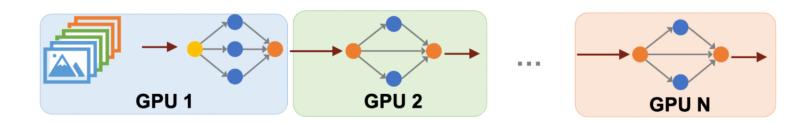


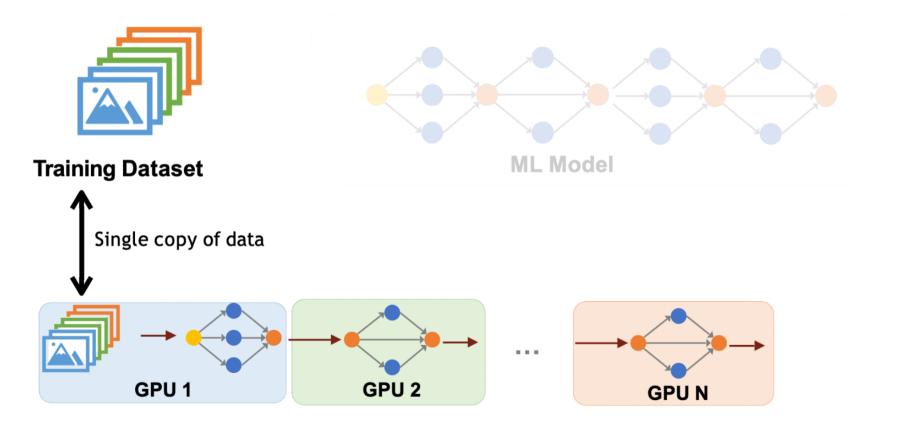


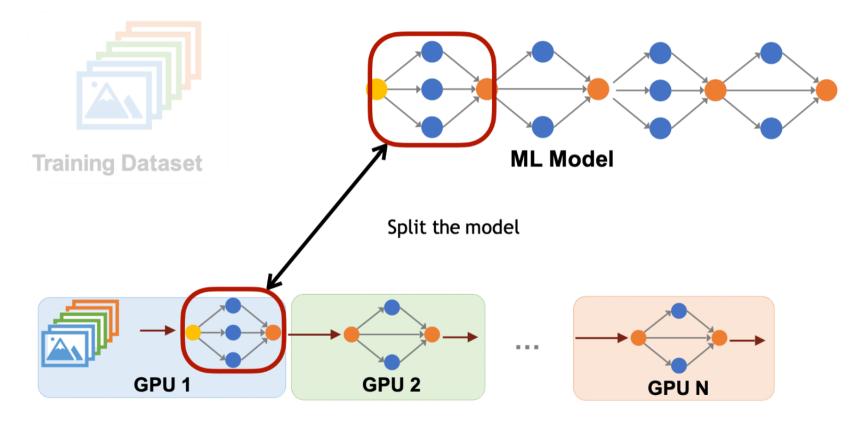


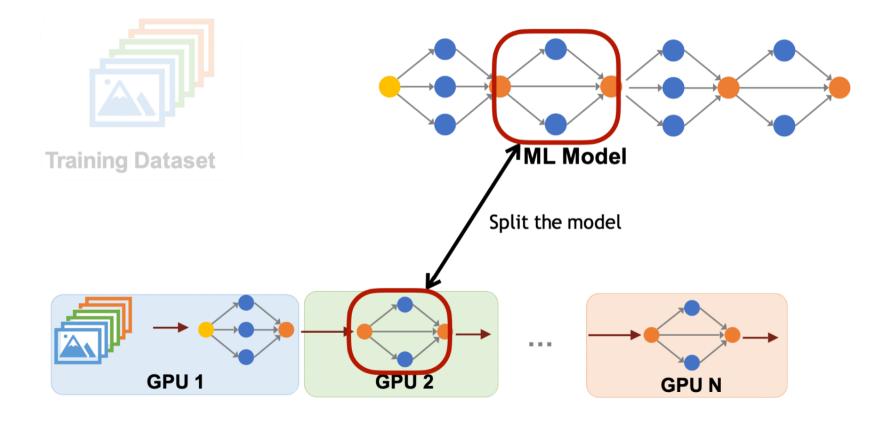
Training Dataset

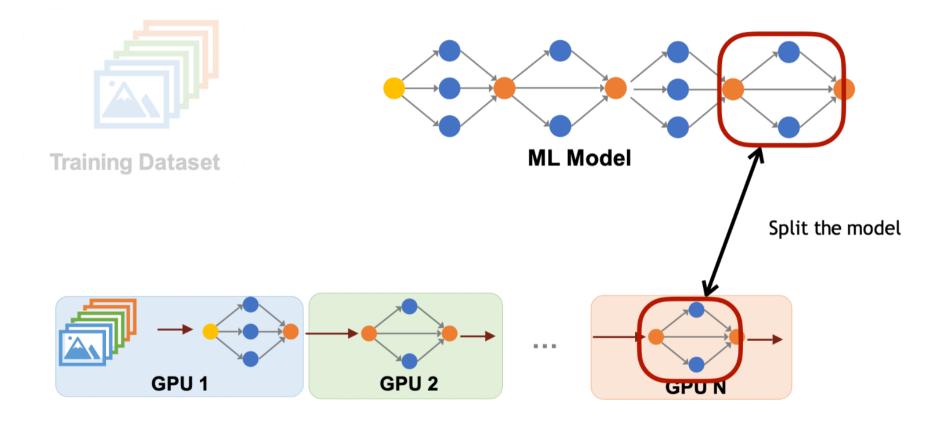




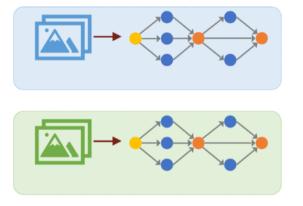


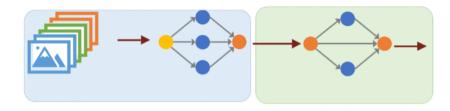






Parallelism in Distributed Training - DP vs MP





Data Parallelism:

- Split the data
- Same model across devices
- Easy to parallelize, high utilization
- N copies of model

Model Parallelism:

- Split the model
- Move activations through devices
- Hard to parallelize, load balancing issue
- Single copy of model

Distributed Training and Memory Optimizations -ZeRO: Train Trillion-scale models Let's take a step back for training a singler layer in practice

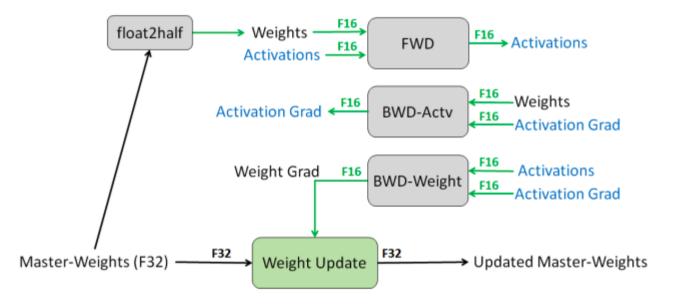


Figure 1: Mixed precision training iteration for a layer.

Memory Consumptions for this example:

Suppose the layer (or model) is trained using Adam Optimizer. The number of parameters are Φ .

Then in a single training iteration, we have to save (corresponding memory consumption):

- Model parameters (fp16): 2Φ
- Model gradients (fp16): 2Φ
- Adam Optimizer states copy of Parameters, Momentum and Variance (fp32): $4\Phi + 4\Phi + 4\Phi = 12\Phi$
- Residual states, including activations, buffer, fragmentations

For a GPT-2 model, even it has only 1.5B model parameters (3GB memory is enough to hold it), training it would cost at least 24GB memory!

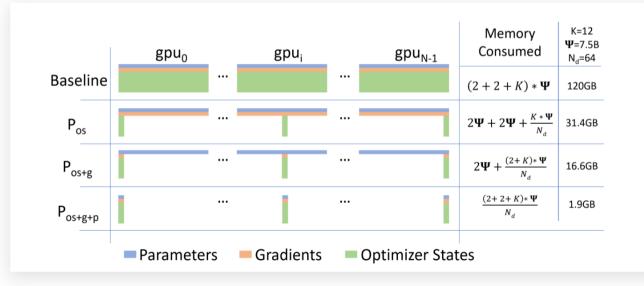
VRam Estimation

Model: HuatuoGPT-7B

- 1. Model
 - a. Param(fp16): 7B*2=14GB
 - b. Grad(fp16):7B*2=14GB
- 2. Optimizer(AdamW)
 - a. Master Weights(fp32): 7B*4=28GB
 - b. Adam m(fp32): 7B*4=28GB
 - c. Adam v(fp32): 7B*4=28GB
- 3. Activation
- 4. Buffer&Fragmentation

Parallel Strategy: ZeRO

- 1. ZeRO-DP: Shard the optimizer state
- 2. ZeRO-1&2: Same communication volume as DP
- 3. ZeRO-3: 1.5 communication volume as DP



K denotes the memory multiplier of optimizer states, and N denotes DP degree

[1] [1910.02054] ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (arxiv.org)

ZeRO: the More GPUs, the Less Memory Consumption!

DP	7.5B Model (GB)			128B Model (GB)			1T Model (GB)		
	Pos	P_{os+g}	P_{os+g+p}	P _{os}	P_{os+g}	P_{os+g+p}	P_{os}	P_{os+g}	P_{os+g+p}
1	120	120	120	2048	2048	2048	16000	16000	16000
4	52.5	41.3	30	896	704	512	7000	5500	4000
16	35.6	21.6	7.5	608	368	128	4750	2875	1000
64	31.4	16.6	1.88	536	284	32	4187	2218	250
256	30.4	15.4	0.47	518	263	8	4046	2054	62.5
1024	30.1	15.1	0.12	513	257	2	4011	2013	15.6

- We can train a 7.5B model (like Llama2) using only 4 V100-32GB GPUs
- We can even train a 128B model using 64 V100-32GB GPUs

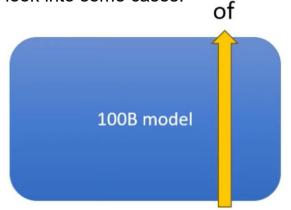
Future

- Efficiency Long context for LLMs
- Hybrid efficiency
 - QLoRA
 - LongLoRA
 - QMOE
- MOE and modularization

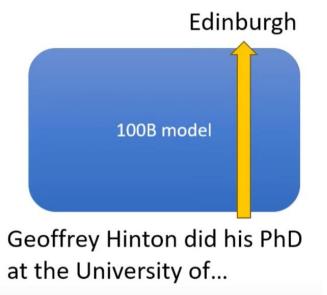
Efficiency Beyond Transformers - Speculative Sampling

Speculative Sampling - Single Token Prediction

Let's look into some cases:

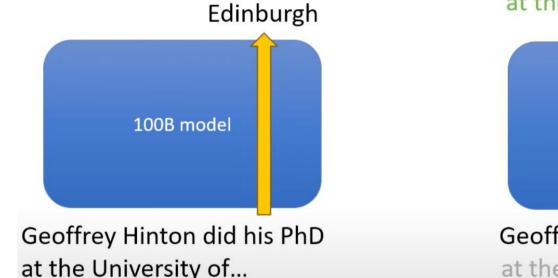


Geoffrey Hinton did his PhD at the University...



- Case 1: Predicting "of" is very easy, maybe we should use a 1B model which is enough
- Case 2: Predicting "Edinburgh" requires knowledge, which can be difficult, maybe we should use a 100B model
- This is key idea 1 behind: let small model deal with easy tokens, while large model deals with difficult tokens

Speculative Sampling - Utilize Transformer Structure



at the University of Toronto

- We can give a transformer model multiple tokens at once, and let a large transformer model check them in parallel, while it does not increase compute time at well
- In this case, the probability for "Toronto" is low, cause the 100B model recognize it.
- This is key idea 2: let large transformer models check error tokens!

Speculative Sampling - Algorithm

- $M_p = draft model$ meta-llama/Llama-2-7b-chat-hf $M_q = target model$ meta-llama/Llama-2-70b-chat-hf
- pf = prefix, K = 5 tokens

 $p_1(x) = M_p(pf) \longrightarrow x_1$ $p_2(x) = M_p(pf, x_1) \longrightarrow x_2$ \dots $p_5(x) = M_p(pf, x_1, x_2, x_3, x_4) \longrightarrow x_5$

Speculative Sampling - Algorithm

$$p_1(x) = M_p(pf) \longrightarrow x_1$$

$$p_2(x) = M_p(pf, x_1) \longrightarrow x_2$$

$$\dots$$

$$p_5(x) = M_p(pf, x_1, x_2, x_3, x_4) \longrightarrow x_5$$

 $q_1(x), q_2(x), q_3(x), q_4(x), q_5(x), q_6(x)$

 $= M_q(pf, x_1, x_2, x_3, x_4, x_5)$

Run target model once

Speculative Sampling - Algorithm

$$p_1(x) = M_p(pf) \longrightarrow x_1$$

$$p_2(x) = M_p(pf, x_1) \longrightarrow x_2$$

$$p_5(x) = M_p(pf, x_1, x_2, x_3, x_4) \longrightarrow x_5$$

...

Token	x1	x2	х3	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

 $q_1(x), q_2(x), q_3(x), q_4(x), q_5(x), q_6(x)$

$$= M_q(pf, x_1, x_2, x_3, x_4, x_5)$$

Token	x1	x2	х3	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

Case 1: If $q(x) \ge p(x)$, then accept

Case 2: If
$$q(x) < p(x)$$
, then accept with probability $\frac{q(x)}{p(x)}$

In this case, we accept "dogs", "love", what about "chasing"? - we accept it with probability 0.8/0.9!

Token	x1	x2	х3	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

Case 1: If $q(x) \ge p(x)$, then accept

Case 2: If q(x) < p(x), then accept with probability $\frac{q(x)}{p(x)}$

In this case, we accept "dogs", "love", what about "chasing"? - we accept it with probability 0.8/0.9, maybe we should accept it!

Token	x1	x2	х3	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

Case 1: If $q(x) \ge p(x)$, then accept

Case 2: If q(x) < p(x), then accept with probability $\frac{q(x)}{p(x)}$

If we accept "chasing", then what about "after"? The probability = 0.3/0.8, so maybe it should be rejected.

Token	x1	x2	х3	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

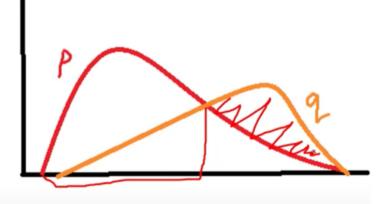
Case 1: If $q(x) \ge p(x)$, then accept

Case 2: If q(x) < p(x), then accept with probability $\frac{q(x)}{p(x)}$

If we reject "after", then we can sample a token from q(4) (based on the large model) !

Actually, don't sample q(x)

Adjusted distribution:
$$(q(x) - p(x))_{+}$$



We sample the 4th token by (q(4) - p(4))+!

Theoretically, we can ensure the token distribution is exactly q(x), so no loss in accuracy!

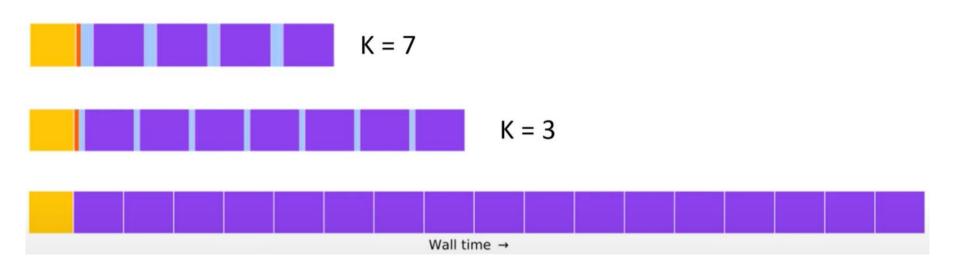
Speculative Sampling - #tokens generated in one pass

Token	x1	x2	х3	x4	x5
	dogs	love	chasing	after	cars
p(x)	0.8	0.7	0.9	0.8	0.7
q(x)	0.9	0.8	0.8	0.3	0.8

Worst case: first token is rejected -> 1 token

Best case: all tokens accepted -> K+1 tokens

Speculative Sampling - Wall Time



Speculative Sampling - Wall Time

		0		
Sampling Method	Benchmark	Result	Mean Token Time	Speed Up
ArS (Nucleus)	XSum (ROUGE-2)	0.112	14.1ms/Token	1×
SpS (Nucleus)		0.114	7.52ms/Token	1.92×
ArS (Greedy)	XSum (ROUGE-2)	0.157	14.1ms/Token	1×
SpS (Greedy)		0.156	7.00ms/Token	2.01×
ArS (Nucleus)	HumanEval (100 Shot)	45.1%	14.1ms/Token	1×
SpS (Nucleus)		47.0%	5.73ms/Token	2.46×
				*

Recommends K = 3-4 Finds 2-2.5x speedup

	TASK	M_q	TEMP	γ	α	SPEED
	ENDE	T5-SMALL ★	0	7	0.75	3.4X
	ENDE	T5-BASE	0	7	0.8	2.8X
O	ENDE	T5-LARGE	0	7	0.82	1.7X
Google Research	ENDE	T5-SMALL ★	1	7	0.62	2.6X
	ENDE	T5-BASE	1	5	0.68	2.4X
	ENDE	T5-LARGE	1	3	0.71	1.4X
Recommends K = 3-7	CNNDM	T5-SMALL ★	0	5	0.65	3.1X
	CNNDM	T5-BASE	0	5	0.73	3.0X
Finds 2-3.4x speedup	CNNDM	T5-LARGE	0	3	0.74	2.2X
	CNNDM	T5-SMALL ★	1	5	0.53	2.3X
	CNNDM	T5-BASE	1	3	0.55	2.2X
	CNNDM	T5-LARGE	1	3	0.56	1.7X

Acknowledgement

- <u>https://hanlab.mit.edu/courses/2023-fall-65940</u>
- https://hanlab.mit.edu/courses/2022-fall-6s965
- <u>https://docs.google.com/presentation/d/1EUV7W7X_w0BDrscDhPg7lMGzJCkeaPkGCJ3bN8dluXc/edit?resou</u> rcekey=0-7Nz5A7y8JozyVrnDtcEKJA
- <u>https://www.youtube.com/watch?v=bQrdd3BI_fM</u>
- <u>https://github.com/princeton-nlp/LLM-Shearing</u>
- <u>https://www.youtube.com/watch?v=S-8yr_RibJ4</u>
- https://www.youtube.com/watch?v=y9PHWGOa8HA
- <u>https://www.youtube.com/watch?v=ZsompoMeIcI</u>
- <u>https://www.youtube.com/watch?v=D2DdEstvS30</u>
- Shanghai AI Lab: 大型语言模型的技术原理

Attention Efficiency - Flash-Attention

Flash-Attention Overview

Background Knowledge: GPU Structure

- SRAM: High-speed Cache Memory
- High-speed, volatile, limited capacity
- HBM: High Bandwidth Memory
- High speed, volatile, large capacity

Key Idea: Utilize Characteristics of Attention

- Improve flops, optimize for SRAM storage

- Reduce IO, optimize the data bandwidth and efficiency

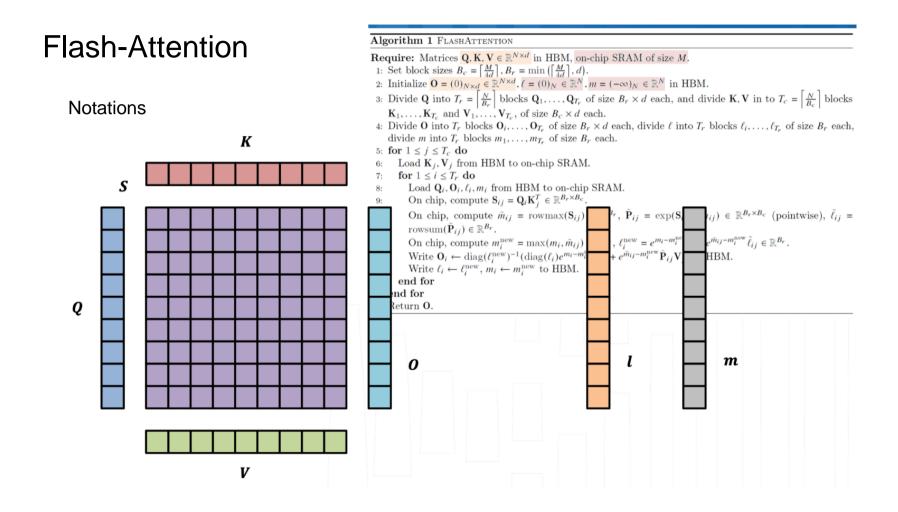
Implementation:

- Softmax: online softmax

- Online softmax optimization, increasing computational efficiency

- Tiling: On-the-fly tiling (reducing computation)
 - Reduce recomputation (save time and resources)

Algorithm	$\mathbf{n} \ 0$ Standard Att	ention Implementat	tion		
1: Load Q 2: Read S	2 , K by blocks from HBM, cor and V by block	npute $\mathbf{P} = \text{softmax}$	e $\mathbf{S} = \mathbf{Q}\mathbf{K}^{T}$, write \mathbf{S} to HBM. (S), write \mathbf{P} to HBM. apute $\mathbf{O} = \mathbf{P}\mathbf{V}$, write \mathbf{O} to HB	BM.	
4: Return O. Streaming Multiprocessors Slow Data Transfer HBM GPU #1 GPU #1 GPU #1 GPU #1 Het M: 1.5 TB/s (20 MB) GPU #1 GPU #1 GPU #1 GPU #1					
				<u>†</u>	
	Attention	Standa	rd FlashAttention	ł I	
	Gflops	66.6	75.2	4	
	HBM R/W (C	GB) 40.3	4.4 —		
	Runtims (m	s) 41.7	7.3		
h inter-					



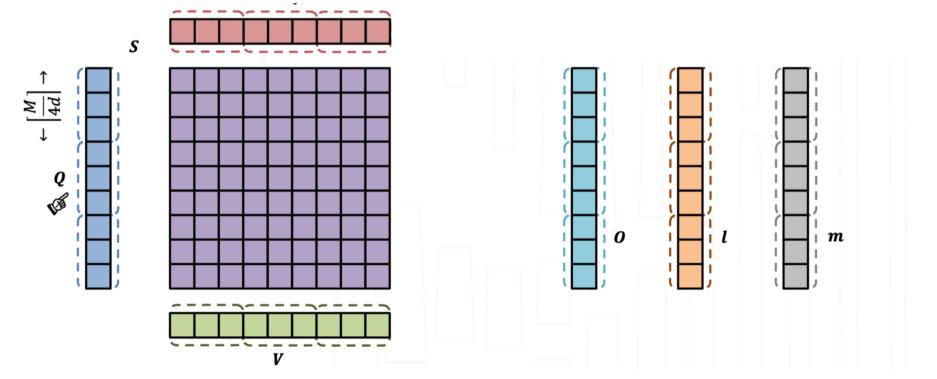
Flash-Attention

Split Blocks

Algorithm 1 FLASHATTENTION

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}$, $\ell = (0)_N \in \mathbb{R}^N$, $m = (-\infty)_N \in \mathbb{R}^N$ in HBM. 3: Divide \mathbf{Q} into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide *m* into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.



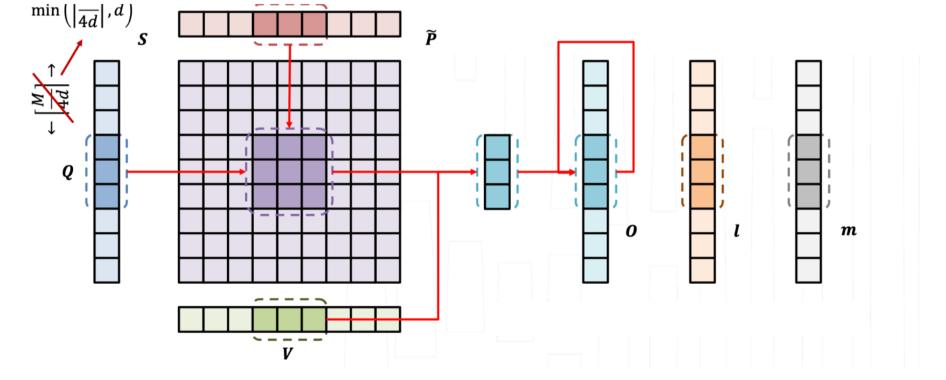
Flash-Attention

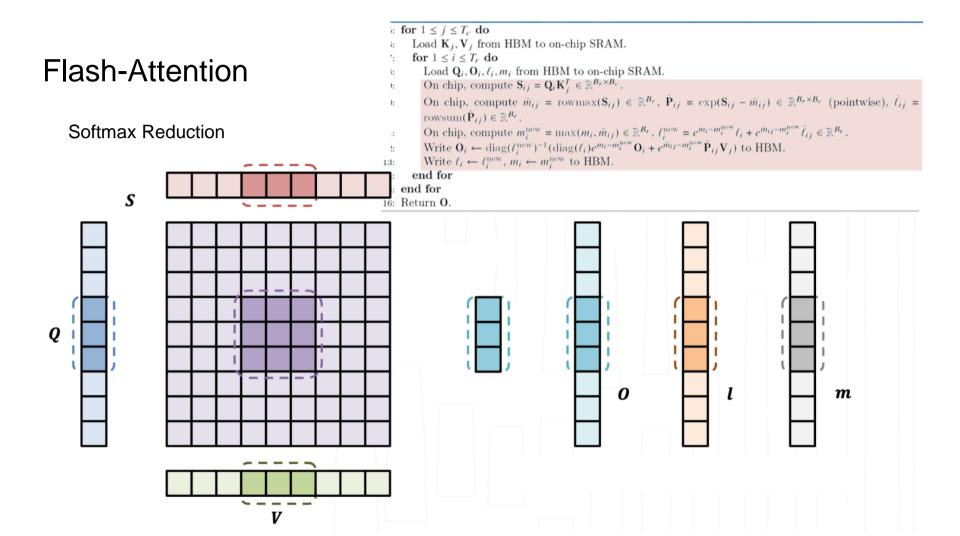
Split Blocks

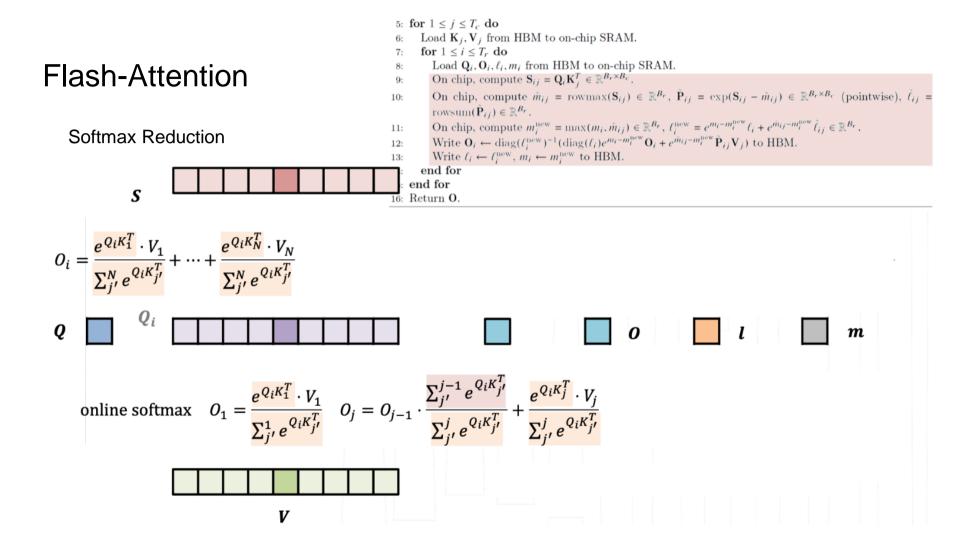
Algorithm 1 FLASHATTENTION

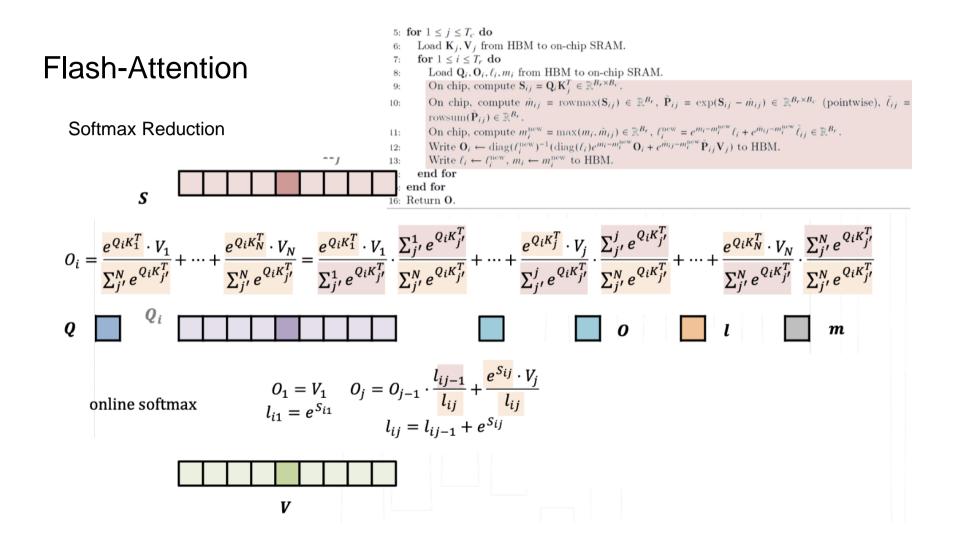
Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

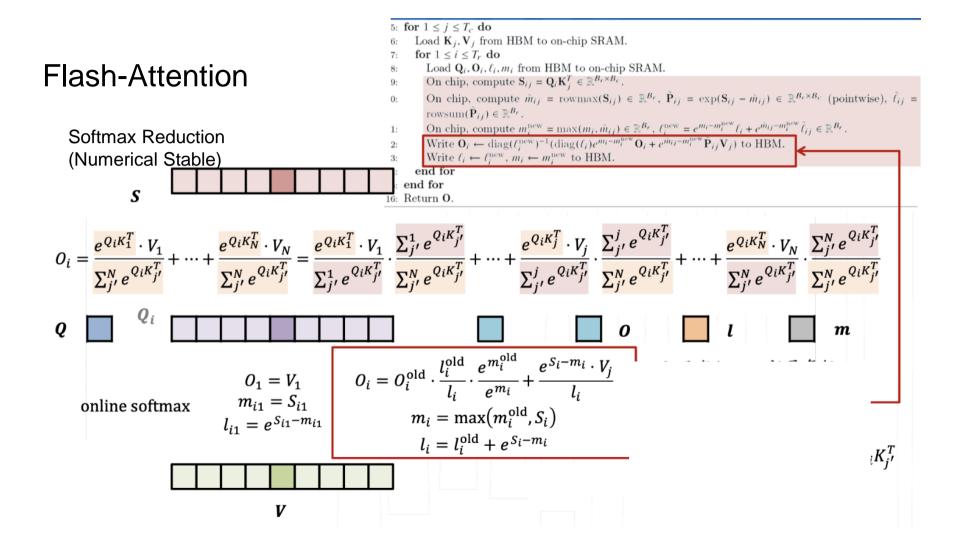
- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil$, $B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d\right)$. 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}$, $\ell = (0)_N \in \mathbb{R}^N$, $m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \begin{bmatrix} N \\ B_r \end{bmatrix}$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \begin{bmatrix} N \\ B_c \end{bmatrix}$ blocks $\mathbf{K}_1, \ldots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \ldots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each divide *m* into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.

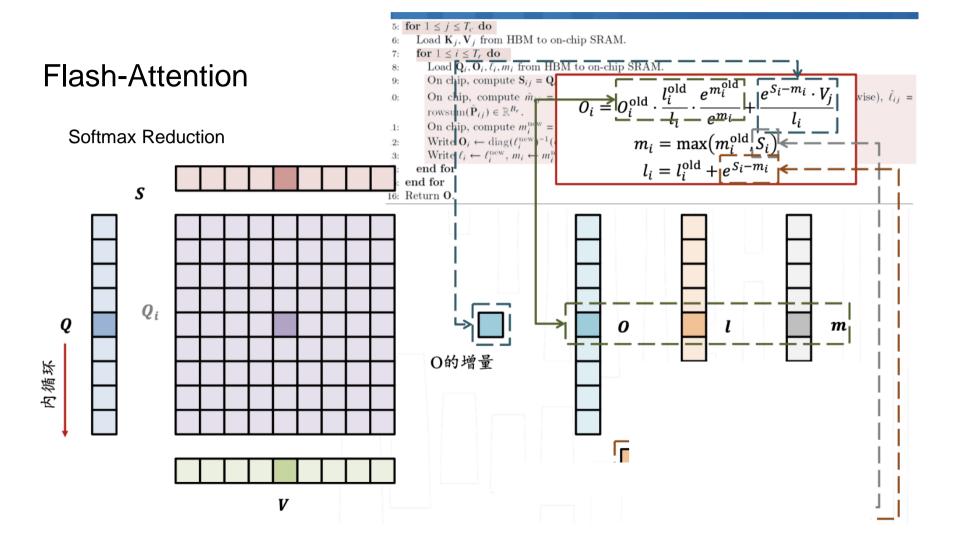












Flash-Attention

6:

7:

8:

9:

10:

11:

12:

13:

14:

Summary: Split blocks, Update Softmax, Complexity= $O(Nd \cdot Nd/M) = O(N^2d^2/M)$

