
CSC6203:

Large Language Model

Lecture 5: Efficiency in LLMs

Fall 2024
Benyou Wang

School of Data Science

Before the Lecture

Awarding to the DL funder Geoffrey Hinton

Awarding to the AlphaFold guys Demis &John

Nobel Prices go to AI guys

● Physics

● Chemistry

● It might be much faster that AI reshape (mostly) everything!

Blog from OpenAI: MLBench – Oct. 10th

● Machine Learning Bench
○ 75 real-world data science benchmark， e.g.,

■ OpenVaccine（COVID-19 mRNA疫苗降解预测）

■ 用于破译古卷轴Vesuvius Challenge

Benchmarking

17 Medals !

Recap

Overview

● LLM training
○ LLM Pretraining (including Word Tokenization)

○ Instruction Finetuning

○ Reinforcement Learning from Human Feedback

● LLM Evaluation

Tokenization

● Before Tokenization : This is tokenizing

● After Tokenization : This is tokenizing

Character-level tokenization?

Word-level tokenization?

Why Subword tokenization?

Pre-training

Example plain text （do not need supervised data, e.g. web and books）
The Large Language Model (LLM) represents a cutting-edge innovation in the field of artificial intelligence, harnessing vast amounts

of textual data to provide nuanced responses and generate coherent narratives. As a descendant of OpenAI's renowned GPT series,

the LLM showcases the rapid evolution of machine learning capabilities, embodying an unparalleled ability to comprehend, generate,

and assist in myriad linguistic tasks. This technological marvel encapsulates the collective knowledge of countless sources and offers

a tantalizing glimpse into the future of human-computer symbiosis, where the boundaries between natural and artificial intelligence

become increasingly blurred.

Training with purely next word (token) prediction

Instruction fine-tuning (supervised fine-tuning)

Usually a triplet (instruction, input, output) -- need supervised data

Training with next word (token) prediction but usually only for the output part

Reinforcement Learning from Human AI Feedback

Today’s main course：efficiency

又想马儿不吃草，也想马儿跑得快！

Why do we need efficiency?

LLMs follow Scaling Laws

Kaplan et al., 2020:

Language modeling

performance improves

smoothly as we

increase the model

size, dataset size, and

amount of compute for

training.

Note 1: “Within reasonable

limits, performance depends

very weakly on architectural

hyperparameters such as

depth and width.”

Jason’s rephrase: You should expect

to get a better language model if you

scale up model size, dataset size,

and amount of compute.

Suggested further reading:

Scaling laws for neural language models (2020).

Training compute-optimal large language models

(2022).

A lot of compute

(log scale!)

What does 1

better loss look

like?

Scaling laws for neural language models

(2020).

Note 2: By the way, data is

unlabeled (self-supervised)

data from the internet (e.g.,

common crawl).

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361

Model size of LMs is growing exponentially, yet the hardware…

Bridge the gap between the supply and demand of AI computing

Outline

● Efficiency within Transformer
○ Long Attention (e.g., Quadratic Computing -> Leaning Computing, w.r.t. the Sequence Length)
○ Sparsity (e.g., Mixture of Expert)
○ Mamba (RNN-style Transformer)

● Efficiency beyond Transformer
○ Quantization
○ Pruning
○ Knowledge Distillation

● Efficiency after LLMs
○ Distributed Training
○ Memory Saving
○ Communication Costs

● Others (e.g., parameter compression and parameter sharing)
○ Parameter compression does not necessarily lead to faster inference.

Efficiency within Transformer

●

William Fedus, Barret Zoph, Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter Models with Simple and

Efficient Sparsity. https://arxiv.org/pdf/2101.03961.pdf

From time-efficiency vs. space-efficiency

Each task has a full finetuned model Can we just finetune a few (partial)

parameters for a new task?

Parameter-efficient finetuning

Efficiency beyond Transformer

Knowledge distillation

Learning smaller models from big

ones

Pruning

Removing weight

connections

Quantization

“Low

resolution”

https://rasa.com/blog/compressing-bert-for-faster-prediction-2/

Efficiency after LLMs

● All Efficiency methods before LLMs (within/beyond transformer)

● + Communication costs

● + Memory saving

● Speculative decoding (only for autoregressive decoding)

Large

Model:

Part I

small

model

In LLM era, a whole model might not be stored in a GPU memory, communication costs may be the bottleneck!

communication

Space-efficient: from parameter to memory

Large

Model:

Part II

Efficiency within Transformers

Recap: Transformers

Recap: Transformers - Multi-head Self-Attention (MHSA)

Recap: Transformers - Feed-Forward Network (FFN)

Efficient Transformers

Could we make it efficient and also maintain the

performance ?

马儿可以不吃草，也跑得快吗？

Motivation：Parameter redundancy existed

Benyou Wang, Yuxin Ren, Lifeng Shang , Xin Jiang, Qun Liu. Exploring extreme parameter compression for pre-trained language models. ICLR 2022.

Decomposability (可分解性)

● A computing module f is decomposable if its sub-components {g1, g2,⋯gH}

could be independently calculated without interactions: f(x) = δ(g1(x), g2(x),⋯,

gH(x)). Usually, δ is a simple operation that has negligible computing cost

compared to g

Decomposability might lead to redundancy, as it has backup modules.

Self-attention is decomposable

● As there exist multiple heads

Feed-forward network is also decomposable

● It performs like a multi-head mechanism

Efficient Transformers - efficient Attention

make attention sparse!

Sparse Attention - LongFormer

Sparse Attention - LongFormer

Sparse Attention - Big Bird

Sparse Attention - Lite Transformer

Mixture of Expert (MoE) - efficient FFNs

Mixture of Expert

MOE in Transformer

William Fedus, Barret Zoph, Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter Models with Simple and

Efficient Sparsity. https://arxiv.org/pdf/2101.03961.pdf

Token-

specific

routing

Mixture of Expert

Key points：

Activate different experts

parameters for each input token.

Sparse activation. Not all

parameters are activated.

● Model Architectures

Routing Algorithms

An example of Hash

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston. Hash Layers For Large Sparse Models.

https://arxiv.org/pdf/2106.04426.pdf

Random hash also works

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston. Hash Layers For Large Sparse Models.

https://arxiv.org/pdf/2106.04426.pdf

MoE Models

● Open-source (above the arrow).

● Private models (under the arrow).

MoE Design

Fine-grained and Shared Experts

MoE Experts Design

● Most recent models place MoE

each layer.

● Some of recent models apply

Shared experts.

Auxiliary Loss

● Importance loss: encourages all experts to have equal importance

● Load loss: ensure balanced loads

● Auxiliary loss: mitigating load balance losses

● Z-loss: improving training stability by penalizing large logits

● MI-loss: mutual information (MI) between experts and tasks to build task-expert alignment

Training with different auxiliary loss:

Training MoE - Deepseek (example)

● Most recent models place MoE

each layer.

● Some of recent models apply

Shared experts.

Deepseek-MoE 16B, total 16.4B parameters, 2.8B activated parameters.

Each MoE layer consists of 2 shared experts and 64 routed experts (select 6 experts).

Training MoE - Deepseek (example)

DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

Training MoE - Deepseek (example)

Deepseek-V2

236B total parameters, 21B are activated.

2 shared experts and 160 routed experts (6 select).

Deepseek-Coder-V2

Continue pretraining from an intermediate checkpoint of

Deepseek-V2 (4.2T) and further train 6T. Total 10.2T tokens.

Sparse Upcycling - Qwen-MoE

Qwen1.5-MoE-A2.7B （Mar, 2024）
Upcycled from Qwen-1.8B, 14.3B parameters in total and 2.7B activated parameters.

● Fine-grained experts (total 64 experts)

● use shared (4 experts) and routing experts (60 experts, choose 4)

A remarkable reduction of 75% in

training

Parameter-efficient Fine-tuning

From Fine-tuning to Parameter-efficient Fine-tuning

Fine-tuning
classification

sequence labeling

question answering

....

Pretraining
BERT

BART

ERNIE

GPT-3

PaLM

Parameter-

efficient

Which to implement the efficient finetuning

● Globally
○ LoRA : Low-rank matrix

● Locally
○ Adapter: a newly-added later

○ Soft Prompt : “some newly-added fake tokens”

○ Expert in MOE

○ ….

Low-Rank Approximations (LoRA)

Baseline Full Fine-tuning

We update weights: W = W + Delta(W)

LoRA Tuning

For a pre-trained weights W_0, we approx Delta(w) by B and A:

During Training, we only compute gradient w.r.t. Delta(W)

Other Parameter-efficient Tunings: Adapter Tuning

We add an adapter module after pre-trained weights W. And during

training, we only compute gradient w.r.t. the adapter

Other Parameter-efficient Tunings: Adapter Tuning

● An adapter layer is simply a feed-

forward neural network with one hidden

layer, and a residual connection.

● For input dimension, d, the adapter layer

also has output dimension d, but

bottlenecks to a lower dimension m in

the middle.

Other Parameter-efficient Tunings: Adapter Tuning

● In practice, r is chosen s.t. r << d and

the adapter layers contain only 0.5% –

8% of the total parameters.

● When added to a deep neural network

(e.g. Transformer) all the other

parameters of the pretrained model are

kept fixed, and only the adapter layer

parameters are fine-tuned.

Other Parameter-efficient Tunings: Prefix-Tuning

We prepend a prefix matrix in each transformer layer. And during Training, we only compute gradient

w.r.t. Prefix parameters

Parameter-efficient Fine-tuning - modulization

Parameter-efficient Fine-tuning

LLM

Task 1

One task, one module

Task 2

Task 3

Task 4

parameter-efficient modules

Skill/Task 2Skill/Task 1

69

Modularity and Compositionality?

Modularity and Compositionality?

Skill/Task 1

Skill/Task 2

70

Modularity and Compositionality?

71

Parameter-efficient Fine-tuning

LLM

Task 1

One task, one module

Task 2

Task 3

Task 4

parameter-efficient

modules

LLM

Task 1

Task 2

Task 3

Task 4

module 1

module 2

parameter-efficient

modules

module 2

One task, composed modules

Modular Retrieval

Juhao Liang , Chen Zhang , Zhengyang Tang , Jie Fu , Dawei Song , Benyou Wang. Modular Retrieval for Generalization and

Interpretation. https://arxiv.org/pdf/2303.13419.pdf

Efficiency Beyond Transformers - Quantization

Quantization - What is Quantization?

Quantization

Quantization - LLM.int8()

Efficiency Beyond Transformers - Pruning

Neural Network Pruning - What is Pruning?

Pruning happens in human brains (synapse 突触 vs. neuron神经元)

Neural Network Pruning - What is Pruning?

Make neural network smaller by removing synapses and neurons

Neural Network Pruning - What is Pruning?

Make neural network smaller by removing synapses and neurons

Neural Network Pruning - How should we formulate pruning

LLM-Shearing: Accelerating via Structured Pruning

An efficient method of constructing LLMs by first pruning a larger existing model and then continually

pre-training it.

● Sheared-LLaMA-2.7B achieves better

performance than existing open-source

models of the same scale with 3% (1/32)

of the compute.

● The trajectory shows a compelling case

that if we invest more tokens and

compute, the capability of Sheared-

LLaMA can be further improved.

LLM-Shearing: Accelerating via Structured Pruning

1. Target Structure Pruning: prune a source model to to a pre-specified target architecture (e.g.,

an existing model's config), and meanwhile maximizing the pruned model’s performance

LLM-Shearing: Accelerating via Structured Pruning

2. Dynamic batch loading:

Pruning results in varying

information retainment

across domains.

Concretely, they load

more data for domains

that recover slow, and the

loading proportion is

dynamically decided on

the fly.

Efficiency Beyond Transformers - Distillation

Framework of knowledge distillation

TinyBERT

In transformer, it would be nice to learn attentions from teacher model.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li , Fang Wang and Qun Liu. TinyBERT: Distilling BERT for

Natural Language Understanding. https://arxiv.org/pdf/1909.10351.pdf

https://arxiv.org/pdf/1909.10351.pdf

Benefits of KD compared to directly training

● More fine grained supervision (learn on every layers)

● Making use of unannotated data (teacher model provide supervision)
○ Data augmentation is useful.

A few work of KD in LLMs

This seems not that working in LLMs. More investigation is needed

Yuxian Gu, Li Dong , Furu Wei , Minlie Huang. Knowledge Distillation of Large Language Models. https://arxiv.org/pdf/2306.08543.pdf

Memory-efficiency training

Models are getting larger and larger

LLMs take much longer time to train!

Distributed Training is almost Necessary for every LLMs!

Parallelism in Distributed Training - Data Parallelism

Parallelism in Distributed Training - Data Parallelism

Parallelism in Distributed Training - Data Parallelism

Parallelism in Distributed Training - Model Parallelism

Parallelism in Distributed Training - Model Parallelism

Parallelism in Distributed Training - Model Parallelism

Parallelism in Distributed Training - Model Parallelism

Parallelism in Distributed Training - Model Parallelism

Parallelism in Distributed Training - DP vs MP

Distributed Training and Memory Optimizations -

ZeRO: Train Trillion-scale models

Let’s take a step back for training a singler layer in practice

Memory Consumptions for this example:

Suppose the layer (or model) is trained using Adam Optimizer.

The number of parameters are 𝚽.

Then in a single training iteration, we have to save (corresponding memory consumption):

- Model parameters (fp16): 2𝚽
- Model gradients (fp16): 2𝚽
- Adam Optimizer states - copy of Parameters, Momentum and Variance (fp32): 4𝚽 + 4𝚽 + 4𝚽 =

12𝚽
- Residual states, including activations, buffer, fragmentations

For a GPT-2 model, even it has only 1.5B model parameters (3GB memory is enough to hold it),

training it would cost at least 24GB memory!

VRam Estimation

Model: HuatuoGPT-7B

1. Model

a. Param(fp16): 7B*2=14GB

b. Grad(fp16):7B*2=14GB

2. Optimizer(AdamW)

a. Master Weights(fp32): 7B*4=28GB

b. Adam m(fp32): 7B*4=28GB

c. Adam v(fp32): 7B*4=28GB

3. Activation

4. Buffer&Fragmentation

Parallel Strategy: ZeRO
1. ZeRO-DP: Shard the optimizer state

2. ZeRO-1&2: Same communication volume as DP

3. ZeRO-3: 1.5 communication volume as DP

[1] [1910.02054] ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (arxiv.org)

K denotes the memory multiplier of optimizer states, and N denotes DP degree

https://arxiv.org/abs/1910.02054

ZeRO: the More GPUs, the Less Memory Consumption!

- We can train a 7.5B model (like Llama2) using only 4 V100-32GB GPUs

- We can even train a 128B model using 64 V100-32GB GPUs

Future

● Efficiency Long context for LLMs

● Hybrid efficiency
○ QLoRA

○ LongLoRA

○ QMOE

● MOE and modularization

Efficiency Beyond Transformers - Speculative

Sampling

Speculative Sampling - Single Token Prediction

- Case 1: Predicting “of” is very easy, maybe we should use a 1B model which is enough

- Case 2: Predicting “Edinburgh” requires knowledge, which can be difficult, maybe we should

use a 100B model

- This is key idea 1 behind: let small model deal with easy tokens, while large model deals with

difficult tokens

Let’s look into some cases:

Speculative Sampling - Utilize Transformer Structure

- We can give a transformer model multiple tokens at once, and let a large transformer model

check them in parallel, while it does not increase compute time at well

- In this case, the probability for “Toronto” is low, cause the 100B model recognize it.

- This is key idea 2: let large transformer models check error tokens!

Speculative Sampling - Algorithm

Speculative Sampling - Algorithm

Speculative Sampling - Algorithm

Speculative Sampling - Rejection Sampling

In this case, we accept “dogs”, “love”, what about “chasing”? - we accept it with probability 0.8/0.9!

Speculative Sampling - Rejection Sampling

In this case, we accept “dogs”, “love”, what about “chasing”? - we accept it with probability 0.8/0.9,

maybe we should accept it!

Speculative Sampling - Rejection Sampling

If we accept “chasing”, then what about “after”? The probability = 0.3/0.8, so maybe it should be

rejected.

Speculative Sampling - Rejection Sampling

If we reject “after”, then we can sample a token from q(4) （based on the large model）!

Speculative Sampling - Rejection Sampling

We sample the 4th token by (q(4) - p(4))+!

Theoretically, we can ensure the token distribution is exactly q(x), so no loss in accuracy!

Speculative Sampling - #tokens generated in one pass

Speculative Sampling - Wall Time

Speculative Sampling - Wall Time

Acknowledgement

● https://hanlab.mit.edu/courses/2023-fall-65940

● https://hanlab.mit.edu/courses/2022-fall-6s965

● https://docs.google.com/presentation/d/1EUV7W7X_w0BDrscDhPg7lMGzJCkeaPkGCJ3bN8dluXc/edit?resou

rcekey=0-7Nz5A7y8JozyVrnDtcEKJA

● https://www.youtube.com/watch?v=bQrdd3BI_fM

● https://github.com/princeton-nlp/LLM-Shearing

● https://www.youtube.com/watch?v=S-8yr_RibJ4

● https://www.youtube.com/watch?v=y9PHWGOa8HA

● https://www.youtube.com/watch?v=ZsompoMeIcI

● https://www.youtube.com/watch?v=D2DdEstvS30

● Shanghai AI Lab: 大型语言模型的技术原理

https://hanlab.mit.edu/courses/2023-fall-65940
https://hanlab.mit.edu/courses/2022-fall-6s965
https://docs.google.com/presentation/d/1EUV7W7X_w0BDrscDhPg7lMGzJCkeaPkGCJ3bN8dluXc/edit?resourcekey=0-7Nz5A7y8JozyVrnDtcEKJA
https://www.youtube.com/watch?v=bQrdd3BI_fM
https://github.com/princeton-nlp/LLM-Shearing
https://www.youtube.com/watch?v=S-8yr_RibJ4
https://www.youtube.com/watch?v=y9PHWGOa8HA
https://www.youtube.com/watch?v=ZsompoMeIcI
https://www.youtube.com/watch?v=D2DdEstvS30

Attention Efficiency - Flash-Attention

Flash-Attention Overview

Background Knowledge: GPU Structure

- SRAM: High-speed Cache Memory

- High-speed, volatile, limited capacity

- HBM: High Bandwidth Memory

- High speed, volatile, large capacity

Key Idea: Utilize Characteristics of Attention

- Improve flops, optimize for SRAM storage

- Reduce IO, optimize the data bandwidth and

efficiency

Implementation:

- Softmax: online softmax

- Online softmax optimization, increasing

computational efficiency

- Tiling: On-the-fly tiling (reducing computation)

- Reduce recomputation (save time and resources)

Flash-Attention

Notations

Flash-Attention

Split Blocks

Flash-Attention

Split Blocks

Flash-Attention

Softmax Reduction

Flash-Attention

Softmax Reduction

Flash-Attention

Softmax Reduction

Flash-Attention

Softmax Reduction

(Numerical Stable)

Flash-Attention

Softmax Reduction

Flash-Attention

Summary: Split blocks, Update Softmax, Complexity=

