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Background
In very broad terms, the data we use to train deep learning models belongs to two main 
domains:

1. Euclidean data:  data represented in multidimensional linear spaces, it obeys 
Euclidean postulates, e.g, text data or tabular data.

2. Non-Euclidean data: in even broader terms, data that doesn’t obey Euclidean 
postulates, e.g, molecular structures, social network interactions, or meshed 3D 
surface.
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Non-geometric models have geometric constraints
NLPers may say “no such geometry in language”.  But “geometry” is not just about 
spatial arrangement!

It is about constraints: design model to “respect” regularity in data. Models like 
Transformers touted as “generic”, but significantly constrained.

Generally, GDL offers us a perspective to categorise existing architectures. Based 
on which data regularity constraints they satisfy.

This is a useful perspective even if you never encounter “geometric” data.



Learning in High Dimensions
In general, learning functions in high dimensions is intractable.

Number of samples required grows exponentially with dimensions.
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Classical notions of regularity are of little use
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Classical notions of regularity are of little use

Sobolev class is too small: approximation error is dimensionality-cursed 



Takeaways

1. Learning in high dimensions is plagued by the curse of dimensionality

2. Impossible without assumptions (“priors”)

3. Classical assumptions of regularity (from low-dimensional analysis) are not 

appropriate priors

4. Geometric priors: inputs are signals defined over low-dimensional geometric 

domains



Geometry to the rescue!

We can inject assumptions about geometry through inductive biases.

Restrict the functions to ones that respect the geometry. This can make the 
high-dimensional problem more tractable!

Examples: Image data should be processed independently of shifts



Continued

Examples: Spherical data should be processed independently of rotations



Continued

Examples: Graph data should be processed independently of isomorphism



A Roadmap for Formalisation
1. To handle geometry of data, we need to formalise where the data lives 

(domain) and how to featurise it (signal) 
2. Once we understand data domains, we can then formalise symmetries of 

those domains (groups)
3. Equipped with groups, we need to formalise how they transform the data 

domains (group actions)
4. Deep learning concerns itself with linear algebra; we need to be able to talk 

about group actions as matrix operations (representations)
5. Using representations, we can formalise what it means for a deep learning 

model to respect symmetries (invariance & equivariance)



Geometric Domains



Signals on Geometric Domains

Signal                                     , C-valued function on Ω

● Domain Ω (often no vector space structure, i.e., we cannot add points)

● Vector space C (dimensions referred to as “channels”)

𝑥∊𝒳(Ω,C)={𝑥: Ω → C}



Signals on Geometric domains

The space of signals 𝒳(Ω,C) is a vector space (possibly infinite-dimensional)

● We can add signals and multiply them by a scalar



Signals on Geometric Domains

The space of signals 𝒳(Ω,C) is a vector space (possibly infinite-dimensional)

● Given an inner product 〈,〉 on C, and a measure 𝜇 on Ω, we can define an 
inner product on 𝒳(Ω,C) as: 
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Symmetries
A symmetry of an object is a transformation of that object that leaves it unchanged

Examples: Symmetry of a triangle



Symmetries

● The identity transformation is always a symmetry 

● Given two symmetry transformations, their composition (doing one after the 

other) is also a symmetry 

● Given any symmetry, it must be invertible 

● Moreover, its inverse is also a symmetry



Groups
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Group actions on objects

The type of an object can be defined by the way it transforms by a group



Group Action
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Linear Group Representation



Group actions on Signals on Geometric Domains
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Symmetry in Learning

Symmetries of the Label Function:

● Label function 𝑓: X → Y e.g., classification task (Y={1,...,K})

● Symmetry of a label function is an invertible label-preserving map 𝑔: X → X, 

i.e. (𝑓○g)(x)=f(x) for all x∊ X
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Symmetries of the Weights



Example
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Social Networks



3D VISION & GRAPHICS



3D VISION & GRAPHICS



STRUCTURAL BIOLOGY



STRUCTURAL BIOLOGY



STRUCTURAL BIOLOGY



STRUCTURAL BIOLOGY


