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Background

In very broad terms, the data we use to train deep learning models belongs to two main
domains:

1. Euclidean data: data represented in multidimensional linear spaces, it obeys
Euclidean postulates, e.g, text data or tabular data.

2. Non-Euclidean data: in even broader terms, data that doesn’t obey Euclidean
postulates, e.g, molecular structures, social network interactions, or meshed 3D
surface.



Data from nature is often geometric
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Models of nature are often geometric
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Models of nature are often geometric
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Non-geometric models have geometric constraints

NLPers may say “no such geometry in language”. But “geometry” is not just about
spatial arrangement!
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Non-geometric models have geometric constraints

NLPers may say “no such geometry in language”. But “geometry” is not just about
spatial arrangement!

It is about constraints: design model to “respect” regularity in data. Models like
Transformers touted as “generic”, but significantly constrained.

Generally, GDL offers us a perspective to categorise existing architectures. Based
on which data regularity constraints they satisfy.

This is a useful perspective even if you never encounter “geometric” data.



Learning in High Dimensions
In general, learning functions in high dimensions is intractable.

Number of samples required grows exponentially with dimensions.
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Curse of Dimensionality




Curse of Dimensionality

“[dimensionality is] a curse which has hung over

the head of the physicist and astronomer for many
a year. ”

— Dynamic Programming

R. Bellman



Classical notions of reqularity are of little use

Lipschitz class is too large: estimation error is dimensionality-cursed
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Classical notions of reqularity are of little use

Sobolev class is too small: approximation error is dimensionality-cursed
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Takeaways

1. Learning in high dimensions is plagued by the curse of dimensionality

2. Impossible without assumptions (“priors”)

3. Classical assumptions of regularity (from low-dimensional analysis) are not
appropriate priors

4. Geometric priors: inputs are signals defined over low-dimensional geometric

domains



Geometry to the rescue!

We can inject assumptions about geometry through inductive biases.

Restrict the functions to ones that respect the geometry. This can make the
high-dimensional problem more tractable!

Examples: Image data should be processed independently of shifts
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Continued

Examples: Spherical data should be processed independently of rotations




Continued

Examples: Graph data should be processed independently of isomorphism




A Roadmap for Formalisation

1.

To handle geometry of data, we need to formalise where the data lives
(domain) and how to featurise it (signal)

Once we understand data domains, we can then formalise symmetries of
those domains (groups)

Equipped with groups, we need to formalise how they transform the data
domains (group actions)

Deep learning concerns itself with linear algebra; we need to be able to talk
about group actions as matrix operations (representations)

Using representations, we can formalise what it means for a deep learning
model to respect symmetries (invariance & equivariance)



Geometric Domains
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Signals on Geometric Domains

Signal x€2(Q,C)={x: Q — C} , C-valued function on Q

e Domain Q (often no vector space structure, i.e., we cannot add points)

e \ector space C (dimensions referred to as “channels”)
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Signals on Geometric domains

The space of signals 2(Q,C) is a vector space (possibly infinite-dimensional)

e \We can add signals and multiply them by a scalar




Signals on Geometric Domains

The space of signals 2(Q,C) is a vector space (possibly infinite-dimensional)

e Given an inner product {,) on C, and a measure u on Q, we can define an
inner product on 2(Q,C) as:

(x,y) = f (), y () dpr(ee)
Q)
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Symmetries

A symmetry of an object is a transformation of that object that leaves it unchanged

Examples: Symmetry of a triangle
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Symmetries

e The identity transformation is always a symmetry

e Given two symmetry transformations, their composition (doing one after the
other) is also a symmetry

e Given any symmetry, it must be invertible

e Moreover, its inverse is also a symmetry



Groups
A group (G,*) is a set G together with binary operation * : GXG — G (denoted
by juxtaposition g * h = gh for brevity) satisfying the following axioms:
Associativity: (gh)k = g(hk) forall g,h,k € G
Identity: 3le € G satisfyingeg = ge =g forallg € G
Inverse: 3lg~! € G for each g € G satisfying g~ 'g=gg~ ' =e
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Group actions on objects

Point in a plane

Image (function)
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Group Action

Let G be a group and X a set. A (left) group action of G on X (often denoted
gx = a(g,x)) is a mapping of the form a : GXX - X satisfying

Identity: ale,x) =xforallx € X

Composition: a(gh,x) = a(g,a(h, x)) forallg,h € Gand x € X



Group Action

e.g.: Euclidean 2D motions ® = R3 (angle + translation) actlng on O = R?:

(6,ty,ty)(x,y) = (xcos + ysinb + t,, xsinf + ycos 6 +t,,)

Exercise: Verify this satisfies the group action axioms
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Linear Group Representation

A d-dimensional (linear) representation of G is a map p: G » R**? assigning
to each g € G an invertible matrix p(g) € R™*" satisfying p(gh) = p(g)p(h) for
allg,h € G.



Group actions on Signals on Geometric Domains

Given a group G acting on a domain Q, we automatically obtain an action of G on the space
of signals X (Q) through the regular representation (p(g)x)(u) = x(g~tu)




Intuition




Intuition
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Symmetry in Learning

Symmetries of the Label Function:

e Label function f: X — Y e.qg., classification task (Y={1,...,K})
e Symmetry of a label function is an invertible label-preserving map g: X — X,
i.e. (fog)(x)=f(x) for all xe X




Symmetries of the Label Function




Symmetries of the Label Function

orbit GB = {gB : g € G}



Symmetries of the Label Function

Y

Exercise: prove that if we knew all the symmetries of the
label function f, we would need only one sample per class



Symmetries of the Weights

Let fg: XX0O = Y be a parametric model (neural network)

A transformation h: ® — 0 is a symmetry of the weights if, forallx € X and 6 € 0

fre(x) = fo(x)




Example
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Equivariance = Symmetry-consistent Generalisation
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Equivariance = Symmetry-consistent Generalisation

Aﬁxf
A f(p1(g)A) = p,(g) fA)

I
flp1(g)&) = p,(g) f (&)
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What’s next?

Algorithmic Reasoning '
Abstract inputs g Processor ) Abstract outputs
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What’s next?

Causal Inference
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Social Networks

Safe spaces for South Synthetic Notch receptors Dietary fiber fights
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3D VISION & GRAPHICS

Self-Driving Cars
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3D VISION & GRAPHICS
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STRUCTURAL BIOLOGY

Protein Folding
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STRUCTURAL BIOLOGY
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STRUCTURAL BIOLOGY

Protein Design = “Inverse Folding”

Protein folding

Primary protein Protein design Tertiary protein
structure structure



STRUCTURAL BIOLOGY
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