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Recap



Overview

e LLM training
o LLM Pretraining (including Word Tokenization)
o Instruction Finetuning
o Reinforcement Learning from Human Feedback

e LLM Evaluation



Tokenization

e Before Tokenization : This is tokenizing
e After Tokenization : This is token izing

N

Character-level tokenization?
Word-level tokenization?
Why Subword tokenization?




Pre-training

Example plain text (do not need supervised data, e.g. web and books)

The Large Language Model (LLM) represents a cutting-edge innovation in the field of artificial intelligence, harnessing vast amounts
of textual data to provide nuanced responses and generate coherent narratives. As a descendant of OpenAl's renowned GPT series,
the LLM showcases the rapid evolution of machine learning capabilities, embodying an unparalleled ability to comprehend, generate,
and assist in myriad linguistic tasks. This technological marvel encapsulates the collective knowledge of countless sources and offers
a tantalizing glimpse into the future of human-computer symbiosis, where the boundaries between natural and artificial intelligence
become increasingly blurred.

name

name S

¥

name

name Sylvain

Training with purely next word (token) prediction
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Instruction fine-tuning (supervised fine-tuning)

Usually a triplet (instruction, input, output) -- need supervised data

Instruction: I am locoking for a job and I need to
fill out an application form. Can you please help
me complete it?

Input:

Application Form:

Name: Age: Sex:

Fhone Number: Email Address:

Education: Can

Output:

Name: John Doe Rge: 25 Sex: Male ;
Fhone Number: ... i

Training with next word (token) prediction but usually only for the output part



Reinforcement Learning from Human Al Feedback

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but is
There was minor > San Francisco, > prone to
property damage, resulting in earthquakes and
but no injuries. massive damage. wildfires.

51 1.2 S3 S2
4 4 A A A 4

Bradley-Terry [1952] paired comparison model
Reward Model (RM)

Jrm (@) = —E (. 1y p[log 6(RMg () — RMy (s"))]
[ |1 :

“winning”  “losing” 5" should score
he Bay Area .. .. wildfires sample  sample higher than s'
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Today’s main course: efficiency
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Why do we need efficiency?



LLMs follow Scaling Laws
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Scaling laws for neural language models

(2020).

Kaplan et al., 2020:
. Note 1: “Within reasonable
Language mOdellng limits, performance

depends very weakly on

performance improves  scitecuurs

hyperparameters such as

Smooth/y as we depth and width.”

increase the model Unlabeled (elf-sopenisec)
. . data from the internet (e.g.,

size, dataset size, and  commonca

amount of compute for

training.

Jason’s rephrase: You should

expect to get a better language

model if you scale up model size,

dataset size, and amount of
compute.

Suggested further reading:
Scaling laws for neural language models (2020).
Training compute-optimal large language models

(2022).



https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361

Model size of LMs is growing exponentially, yet the hardware. ..
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Bridge the gap between the supply and demand of Al computing

before
Training d Inference
after ‘u’ %
58 =
Training  — = [ e
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Model compression:
Pruning, sparsity, quantization, etc



Qutline

1. Overview of Efficiency in LLMs
2. Efficiency before the LLM Era

o Efficiency beyond Transformer (Quantization, Pruning, Knowledge distillation etc.)
o  Efficiency within Transformer (Sparsity e.g., Mixture of Expert and efficiency in long context)
o Parameter-efficient finetuning (Lora, adapter, prompt, moe) and modularization

3. Efficiency after the LLM Era
a. Memory-efficient Training: ZeRO, LOMO, Distributed Training, Flash-Attention, Lora/QLORA,
Language model Inference: Early existing and Speculative decoding

4. Future direction



Efficiency before LLMs

e Efficiency within Transformer
o Sparsity (e.g., Mixture of Expert)
o Long Attention (e.g., quadratic computing -> leaning computing, w.r.t. the sequence length)

e Efficiency beyond Transformer

o Quantization
o Pruning
o Knowledge distillation

e Parameter-efficient Finetuning
o Save space for fine-tuning.

o Parameter compression does not necessarily lead to faster inference.



Efficiency beyond Transformer
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Quantization Pruning
“Low resolution” Removing weight connections

il

Knowledge distillation
Learning smaller models from big ones

https://rasa.com/blog/compressing-bert-for-faster-prediction-2/



Efficiency within Transformer

e Sparsity (e.g., Mixture of Expert [1])
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e Efficiency for Long Context
o Computing complexity of is O(N2D), which is quadratic to the sequence length

William Fedus, Barret Zoph, Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter Models with Simple and
Efficient Sparsity. https://arxiv.org/pdf/2101.03961.pdf



From time-efficiency vs. space-efficiency

Each task has a full finetuned model < Can we just finetune a few (partial)

/@ /MAD Start/End Spax

ﬁp Mask LM Mask LM
&« @«

BERT e

Eale]. ElEE].

Masked Sentence A Masked Sentence B
Unlabeled Sentence A and B Pair /
Pre-training

-

\& Question ‘. Paragraph /
Question Answer Pair

Fine-Tuning

Parameter-efficient finetuning

parameters for a new task?




Space-efficient: from parameter to memory

4 )

small
model

\_ J

In LLM era, a whole model might not be stored in a GPU memory, communication costs may be the bottleneck!



Efficiency after LLMs

All Efficiency methods before LLMs (within/beyond transformer)
+ Communication costs

+ Memory saving

Speculative decoding (only for language model)



Efficiency within Transformers



Recap: Transformers

Add & Norm
Feed
Forward
g | A Add & Norm ==
rLoadaNom ) Multi-Head
Feed Attention
Forward 7 7 Nx
— ]
Nix Add & Norm
~—|_Add & Norm ) Mosked
Multi-Head Multi-Head
Attention Attention
L At 2
\—— / \ )
Pasitional @—@ @ Positional
Encoding Encoding
Input Qutput
Embedding Embedding

Each encoder block has two sub-layers:

* The first is a multi-head self-attention mechanism.

* The second is a position-wise fully connected feed-
forward network.

Each decoder block has an additional third sub-layer:

* The third is a multi-head attention over the output of
the encoder stack.

A residual connection is added around each of the two

sub-layers, followed by layer normalization:

LayerNorm(z + Sublayer(x))

The decoder generates the output sequence of
symbols one element at a time in an auto-regressive
manner.



Recap: Transformers - Multi-head Self-Attention (MHSA)

* Project Q, K and V with h different, learned
linear projections.

* Perform the scaled dot-product attention
function on each of these projected versions
of Q, Kand V in parallel.

* Concatenate the output values.

* Project the output values again, resulting in
the final values.

MultiHead(Q, K, V') = Concat(head, ..., heady, WO
where head; = Attention(QW |, KW, viw¥
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Recap: Transformers - Feed-Forward Network (FFN)

* Each block in our encoder and decoder contains a fully connected feed-forward network, which
is applied to each position separately and identically.
* This consists of two linear transformations with a ReLU activation in between.

FFN(x) = max(0, Wy + by )Ws + by

* The middle hidden size is usually larger than and input and output size (inverted bottleneck).

Model #L #H |dyodel LR Batch

‘ S~ ' 125M 12 12 768 | 6.0e—4 0.5M
M’l{ 350M 24 16 | 1024 3.0e-4 0.5M
X ’ SO ‘ 13B 24 32 |2048| 2.0e-4 1M
Q{%“’ﬁo&*" 27B 32 32 [2560| 1.6e—4  IM
> W"" 67B 32 32 [4096| 1.2¢—4 2M
=\ . £\ ‘ output layer 13B 40 40 |5120| 1.0e—4  4M

. 30B 48 56 | 7168 1.0e—4 4M
nput Nyer 6B 64 72 |9216| 0.8e—4  2M
hidden layer 1 hidden layer 2 175B 96 96 [12288| 1.2¢—4 M




Efficient Transformers
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Efficient Transformers: A Survey [Tay et al., 2020]



Why could we achieve efficiency within Transformer
but maintaining the performance ?

S)LAILAIZE, EHERIS?



Parameter redundancy existed

1.0 1.0
0.9 average 0.9 average
g 8
8 s
B §
% 0.5 % 05
3 3
8 8
0.0 0.0
0 64 128 256 384 768 0 64 128 256 384 768
PCA components PCA components
(a) PCA for each single weight matrix (b) PCA for a pair of matrices along columns

Figure 1: PCA for existing weight block matrices in BERT-base. We got nearly similar results in
Fig. 5 for paired matrices along rows and columns, as shown in App. C.

Benyou Wang, Yuxin Ren, Lifeng Shang, Xin Jiang, Qun Liu. Exploring extreme parameter compression for pre-trained language models. ICLR 2022.



Decomposability (AT 5> fiR k)

e A computing module f is decomposable if its sub-components {g1, g2,---gH}
could be independently calculated without interactions: f(x) = d(g1(x), g2(x), -,

gH(x)). Usually, d is a simple operation that has negligible computing cost
compared to g

Decomposability might lead to redundancy, as it has backup modules.



Self-attention is decomposable

e As there exist multiple heads

1

T oT
\/axw,f2 W XHXwWY W

Atty, (X) = Softmax (



Feed-forward network is also decomposable

e It performs like a multi-head mechanism

4D
FEN(X) = ) GeLU(XW.; + b, )W, + b7
h=1



Efficient Transformers - efficient Attention



Sparse Attention - LongFormer

Local Attention + Global Attention

]

1 L

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window

» Attention with sliding window (analogous to CNNs):
* A fixed-size window attention surrounding each token.
* The complexity is reduced from O(N2) to O(N x W), where W is the window size.

* Attention with dilated sliding window (analogous to dilated CNNs):
* Dilate the sliding window with gaps of size dilation D.
* The receptive field is enlarged from W to W x D, with the same complexity.

Longformer: The Long-Document Transformer [Beltagy et al., 2020]



Sparse Attention - LongFormer

Local Attention + Global Attention

(a) Full n* attention (d) Global+sliding window

* Global attention added on a few pre-selected input locations:
» Classification: The special token ([CLS]), aggregating the whole sequence.
* QA: All question tokens, allowing the model to compare the question with the document.

» Global attention is applied symmetrically:

» A token with a global attention attends to all tokens across the sequence, and all tokens in the
sequence attend to it.

Longformer: The Long-Document Transformer [Beltagy et al., 2020]



Sparse Attention - Big Bird

Random Attention + Local Attention + Global Attention
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(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

* Random sparse attention:
» Each query attends over r random number of keys: i.e. Ali, ) = 1 for r randomly chosen keys.
* Information can flow fast between any pair of nodes (rapid mixing time for random walks).

Big Bird: Transformers for Longer Sequences [Zaheer et al., 2021]



Sparse Attention - Lite Transformer

Local Convolution + Global Attention

* Long-Short Range Attention (LSRA):
* Convolution: Efficiently extract the local features.
* Attention: Tailored for global feature extraction.

Original Attention

(Too much emphasize on
local feature extraction)

it

requires
enormous
amount
of
resources
to
achieve
high
scores

it

requires

enormous

Attention in LSRA

(Dedicated for global
feature extraction)

it
requires
enormous
amount
of
resources
to
achieve
high
scores

Lite Transformer with Lona-Short Ranae Attention [Wu et al.. 20201
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Efficient Transformers - efficient FFNs



Mixture of Expert

* Gating network : decides what expert to use

g,8,,--8; - gating functions

Expert 1

Expert 2

Expert k




MOE In Transformer
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William Fedus, Barret Zoph, Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter Models with Simple and
Efficient Sparsity. https://arxiv.org/pdf/2101.03961.pdf



How to gate? An example of Hash

4 }

: } !
h
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Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston. Hash Layers For Large Sparse Models.

https://arxiv.org/pdf/2106.04426.pdf



Random hash also works

Table 3: Different Hash Layering Methods on pushshift.io Reddit.

Model Hashing Type Valid PPL.  Test PPL.
Baseline Transformer - 24.90 24.96
Hash Layer 1x64 Balanced assignment 23.16 23.23
Hash Layer 1x64 Fixed random assignment 23.22 23.27
Hash Layer 1x64 Token clustering (using Baseline Transformer) 23.90 23.99
Hash Layer 1x64 Dispersed Hash (within token clusters) 23.17 23.22
Hash Layer 1x64 Hash on position 25.07 25.14
Hash Layer 1x64 Bigrams 24.19 24.28
Hash Layer 1x64 Previous token 24.16 24.22
Hash Layer 1x64 Future token predictions (using Transformer Baseline) 25.02 25.09
Hash Layer 1x64 Future token (Oracle) 1.97 1.97
Hash Layer 5x16 Same hash per layer (balance assignment) 23.74 23.81
Hash Layer 5x16 Different Hash per layer 23.21 23.27

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston. Hash Layers For Large Sparse Models.
https://arxiv.org/pdf/2106.04426.pdf



Parameter-efficient Fine-tuning



From Fine-tuning to Parameter-efficient Fine-tuning

Parameter-
Pretraining BERT efficient classification

BART  Fine-tuning _ sequence labeling
— — —>» ERNIE question answering
— GPT-3

PaLM

Q
e

[ [ (e



Which to implement the efficient finetuning

e Globally
o LoRA : Low-rank matrix
e Locally

o Adapter: a newly-added later
Soft Prompt : “some newly-added fake tokens”
Expert in MOE

o O O



Low-Rank Approximations (LoORA)

* Improve efficiency by leveraging low-rank approximations of the self-attention matrix.
* The key idea is to assume low-rank structure in the NxN matrix.

kxn

mxn m % k

Image credit: https://dustinstansbury.github.io/theclevermachine/assets/images/svd-data-compression/low-rank-approximation.png



Baseline Full Fine-tuning

Baseline Full Fine Tuning

1\ We update weights: W = W + Delta(W)
Problem
Pre trained Weights S~ . .
“ v Weight Updates Delta(W) is huge
w Deltalw)



LORA Tuning

Pretrained

approximated Weights
Weight Updates — A

Deltalw)

%

For a pre-trained weights W_0, we approx Delta(w) by B and A:
h=Wor + AWz = Woz + BAz where B € R¥™" A € R™*¥, and the rank r < min(d, k)

During Training, we only compute gradient w.r.t. Delta(W)



Low-Rank Approximations - Linformer
Approximate Self-Attention with Low-Rank Matrix
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* |t projects the length dimension (not the feature dimension) of keys and values to a lower-
dimensional representation (from N to k).
* Low-rank method reduces the memory complexity problem of self-attention (from N N to NxKk).

Linformer: Self-Attention with Linear Complexity [Wang et al., 2020]



Other Parameter-efficient Tunings: Adapter Tuning

We add an adapter module after pre-trained weights W. And during
training, we only compute gradient w.r.t. the adapter



Other Parameter-efficient Tunings: Prefix-Tuning

?

# Fine-tuning X Expensive to store a copy of
(100% parameters) the full LM for each task.

ucPrefix \1 Freezing the LM parameters

Prefix
(Table-to-text)

Transformer (Pretrained)

\

+ 250K parameters

Prefix-tuning Very lightweight.
(0.1% parameters)

We prepend a prefix matrix in each transformer layer. And during Training, we only compute gradient
w.r.t. Prefix parameters



Parameter-efficient Fine-tuning - modulization



Parameter-efficient Fine-tuning

parameter-efficient modules

- ~ Task 1
Task 2
LLM
Task 3
g J
Task 4

One task, one module



Modularity and Compositionality?

Skill/Task 1

Skill/Task 2

51



Modularity and Compositionality?

Skill/Task 1

52



Modularity and Compositionality?

53



Parameter-efficient Fine-tuning

parameter-efficient parameter-efficient
modules modules
) Task 1 —\ module 1
Task 2
LLM LLM module 2
Task 3
. y, \ ,
module 2 Task 3
Task 4

Task 4

One task, one module One task, composed modules



Modular Retrieval

Modules

Available Tasks Unseen Tasks

English Medical
News Task News Task
Legal Hindi
News Task News Task
English Medical
Medical Task Legal Task
Hindi English
Legal Task Legal Task

Juhao Liang , Chen Zhang , Zhengyang Tang , Jie Fu , Dawei Song , Benyou Wang. Modular Retrieval for Generalization and
Interpretation. https://arxiv.org/pdf/2303.13419.pdf



Efficiency Beyond Transformers - Quantization



Quantization - What is Quantization?

Quantization is the process of constraining an input from a
continuous or otherwise large set of values to a discrete set.

— Continuous Signal Quantized Signal Original Image 16-Color Image

Quantization Error

k'['l-. i
Images are in the public domain.

The difference between an input value and its quantized value

. : R “Palettization”
is referred to as quantlzatlon error.

Quantization [Wikipedial




Quantization
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Quantization - LLM.int8()

Mixed-Precision Decomposition

|
Method et i i Y
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* Motivation: Transformers have outlier features that have large values (especially large models).
* They occur in particular hidden dimensions, leading to large quantization error.

* Key idea: Separate outlier features into a separate FP16 MM, quantize the other values to Int8.
» Outlier: At least one feature dimension with a magnitude larger than the threshold (6).
» Token-wise scale factor (for X) and (output) channel-wise scale factor (for W).

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [Dettmers et al., 2022]



Efficiency Beyond Transformers - Pruning



Neural Network Pruning - What is Pruning?

Pruning happens in human brains (synapse 3fif vs. neuronf#i£25T)

Number of Synapses 15000 synapses
per neuron

7000 synapses
per neuron 2

2500 synapses

per neuron

Time
Newborn 2-4 years old Adolescence Adult
Do We Have Brain to Spare? [Drachman DA, Neurology 2004] Data Source: 1, 2

Peter Huttenlocher (1931-2013) [Walsh, C. A., Nature 2013] Slide Inspiration: Alila Medical Media



Neural Network Pruning - What is Pruning?

Make neural network smaller by removing synapses and neurons

before pruning after pruning

pruning .
synapses

pruning .
neurons

Optimal Brain Damage [LeCun et al., NeurlPS 1989]
Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]



Neural Network Pruning - What is Pruning?

Make neural network smaller by removing synapses and neurons

-

.

Train Connectivity
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Prune Connections

J

<

|

Train Weights

Accuracy Loss
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Pruning Ratio (Parameters Pruned Away)

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]



Neural Network Pruning - How should we formulate pruning

* In general, we could formulate the pruning as
follows:

X
arg min L(x; W) |
P
subject to
IWllp <N
« L represents the objective function for neural
network training;
 Xisinput, W is original weights, W is pruned | |
weights; arg min L(x; W) arg min L(x; Wp)
. . w P
. |IW, ]|y calculates the #nonzeros in Wy, and N is 5.1 IWpllg < N

the target #nonzeros.



LLM-Shearing: Accelerating via Structured Pruning

An efficient method of constructing LLMs by first pruning a larger existing model and then continually
pre-training it.

(N BT, BT
A U o -

wun
w

Average Downstream Acc (%)

Sheared-LLaMA (ours)
OpenLLaMA v2

OpenLLaMA v1

INCITE.

Pythia

OPT o

10B 50B 500B 1T
#Tokens for Training

Sheared-LLaMA-2.7B achieves better
performance than existing open-source
models of the same scale with 3% (1/32)
of the compute.

The trajectory shows a compelling case
that if we invest more tokens and
compute, the capability of Sheared-
LLaMA can be further improved.



LLM-Shearing: Accelerating via Structured Pruning

head inter layer
z VA
J J
1 | | o H B BN
. . Structured l'—] - -. . ....
N EE EE EmEm M OH EEEE  EEEE
yhidden— H B mEEEm H EEEE
HE H == mm = HE N NN MHAT FFN1 MHA2 FFN:
MHA 1 FFN 1 MHA 2 FFN 2 MHA 3 FFN 3
Source Model Target Model
Ls:3,d,s=6,H5=4,m$:8 LT:2,dT:3,HT:2,mT:4

1. Target Structure Pruning: prune a source model to to a pre-specified target architecture (e.g.,
an existing model's config), and meanwhile maximizing the pruned model’s performance



LLM-Shearing: Accelerating via Structured Pruning

Algorithm 1: Dynamic Batch Loading

Require: Training data of k domains Dy, D5, - - - , Dy, validation data Dy*!, Dy, ... Dyal,
initial data loading weights wq € R*, reference loss £yor € R*, LM loss function £ or pruning
loss Lprune, training steps 7', evaluation interval m, model parameters 0 (0, z, ¢, A for pruning)

fort=1,---.,Tdo
if t mod m = 0 then
0i[i] « L0, z, DY) if pruning else L£(0, DY)
A[i] < max {£4[i] — Lret[d], 0} > Calculate loss difference
wy < UpdateWeight (wWi_m, A¢) > Update data loading proportion
end
Sample a batch of data B from D1, D>, - - - , D}, with proportion wy;
if pruning then
| Update 0, z, ¢, A with Lune(, 2, ¢, A) on B
else
| Update € with £(6, B)
end

end

Subroutine UpdateWeight (w, A)
a + w-exp (A) > Calculate the unnormalized weights
W — ﬁ return w > Renormalize the data loading proportion

«li
return ¢

i

2. Dynamic batch loading:
Pruning results in varying
information retainment
across domains.
Concretely, they load
more data for domains
that recover slow, and the
loading proportion is
dynamically decided on
the fly.



Efficiency Beyond Transformers - Distillation



Framework of knowledge distillation

Teacher Model




TinyBERT i =

7 Attng g .
! *. > v
/ _ - k
! Attention Matrices Attention Matrices *
1 (Rheadi=ty (Rheadstsly i
!

\  Hidden States
' (R (RId") .

A=

Teacher Layer Student Layer

In transformer, it would be nice to learn attentions from teacher model.

Xiaogi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li , Fang Wang and Qun Liu. TinyBERT: Distiling BERT for
Natural Language Understanding. https://arxiv.org/pdf/1909.10351.pdf



https://arxiv.org/pdf/1909.10351.pdf

Benefits of KD compared to directly training

e More fine grained supervision (learn on every layers)

e Making use of unannotated data (teacher model provide supervision)
o Data augmentation is useful.



A few work of KD in LLMs

© 504 —mmmmee Teacher: GPT-2:1.5B| god ________ Teacher: GPT-) 6B Teacher: OPT 138
o
(¥}
wv
= 451 55
o
(U]
@ 4
o ) ~de— MiniLLM MiniLLM ~Je— MiniLLM
< 35 - . -e- - .
e &~ SeqkD 45 - SeqkKD 45 ) SegKD
100M 200M 400M  700M 1B 1.5B 2B 2.5B 1.5B 3B 6B
# of student parameters # of student parameters # of student parameters

Figure 1: The comparison of MINILLM with the sequence-level KD (SeqKD) in terms of the average
GPT-4 feedback score on our evaluation sets. Left: GPT-2-1.5B as the teacher and GPT-2 125M,
340M, 760M as the students. Middle: GPT-J 6B as the teacher and GPT-2 760M, 1.5B, GPT-Neo
2.7B as the students. Right: OPT 13B as the teacher and OPT 1.3B, 2.7B, 6.7B as the students.

This seems not that working in LLMs. More investigation is needed

Yuxian Gu, Li Dong , Furu Wei, Minlie Huang. Knowledge Distillation of Large Language Models. https://arxiv.org/pdf/2306.08 543.pdf



Memory-efficiency training



Models are getting larger and larger

LLMs take much longer time to train!

a Boss: What did you do last month?

You: Trained the model for one epoch. |/

a Boss: Umm, fine, what is your plan for next month?

You: Train... train the model for one more epoch? |4

[

b

.
LN |




Distributed Training is almost Necessary for every LLMs!

e Developers /Researchers’ time are more valuable than hardware .
e If a training takes 10 GPU days

e Parallelize with distributed training

e 1024 GPUs can finish in 14 minutes (ideally)!

¢ The develop and research cycle will be greatly boosted



Parallelism in Distributed Training - Data Parallelism

(B <O

GPU 1

GPU 2

T <>

GPUN

Data Parallelism

Training Dataset



Parallelism in Distributed Training - Data Parallelism
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Parallelism in Distributed Training - Data Parallelism

ML Model

Same model across devices

(- )
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Parallelism in Distributed Training - Model Parallelism

Training Dataset ML Model

ﬂa@ e R

GPU 1 GPU 2 GPU N




Parallelism in Distributed Training - Model Parallelism

Training Dataset

Single copy of data

P < e =

GPU 1 GPU 2 e




Parallelism in Distributed Training - Model Parallelism

ML Model

Split the model

A\ﬁ —

GPU 1 GPU 2 GPUN




Parallelism in Distributed Training - Model Parallelism

ML Model

Split the model

.<:>4

GPUN




Parallelism in Distributed Training - Model Parallelism




Parallelism in Distributed Training - DP vs MP

A <3

S . B

S

Data Parallelism: Model Parallelism:

e Split the data e Split the model

e Same model across devices e Move activations through devices

o Easy to parallelize, high utilization o Hard to parallelize, load balancing issue

e N copies of model ¢ Single copy of model



Distributed Training and Memory Optimizations -
ZeRO: Train Trillion-scale models



Let’s take a step back for training a singler layer in practice

Ty

F16
float2half Weights ——— F16 .
. 8 . F16 FWD —— Activations
Activations —— )
) ™ F16 .
—\Weigh
Activation Grad «<—— BWD-Actv F16 EI.E t.";
re— Activation Grad
Weight Grad Fie -qiﬁctiuatiﬂnﬁ
B BWD-Weight | ;

16 N
e—— A ctivation Grad

Master-Weights (F32) i{ Weight Update}m—é Updated Master-Weights

Figure 1: Mixed precision training iteration for a layer.




Memory Consumptions for this example:

Suppose the layer (or model) is trained using Adam Optimizer.
The number of parameters are .

Then in a single training iteration, we have to save (corresponding memory consumption):
- Model parameters (fpl6): 2®
- Model gradients (fp16): 2®
- Adam Optimizer states - copy of Parameters, Momentum and Variance (fp32): 4® + 4® + 4P =
12
- Residual states, including activations, buffer, fragmentations

For a GPT-2 model, even it has only 1.5B model parameters (3GB memory is enough to hold it),
training it would cost at least 24GB memory!



VRam Estimation

Model: HuatuoGPT-7B
1. Model
a. Param(fp16): 7B*2=14GB
b. Grad(fpl6):7B*2=14GB
2. Optimizer(AdamW)
a. Master Weights(fp32): 7B*4=28GB
b. Adam m(fp32): 7B*4=28GB
c. Adam v(fp32): 7B*4=28GB
3. Activation
4. Buffer&Fragmentation



Parallel Strategy: ZeRO

1. ZeRO-DP: Shard the optimizer state
2. ZeR0O-1&2: Same communication volume as DP
3. ZeRO-3: 1.5 communication volume as DP

gPUg gPy;
Baseline
POS
P05+g
POS+g+p |
Parameters Gradients

Memory k=12

C g | ¥eTse

gPpUy.1 onsume N,=64
24+2+K)«¥ | 120GB
2W+ 2% + % 31468

d

29 + —(2+:)" ¥ | 16.6G8
(2+ 2+ K)*¥ 1.9GB

Ny

Optimizer States

[1][1910.02054] ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (arxiv.org)



https://arxiv.org/abs/1910.02054

ZeRO: the More GPUs, the Less Memory Consumption!

7.5B Model (GB)

128 B Model (GB)

1T Model (GB)

bP Pm; Pos—i—g Pos—}—g—!—p Pos Pos—l—g me—i—g—}—p Pos Pos—l—g Po.@—}—g—kp
1 120 120 120 2048 | 2048 2048 16000 | 16000 16000
4 52.5 | 41.3 30 896 704 512 7000 | 5500 4000
16 35.6 | 21.6 7.5 608 368 128 4750 | 2875 1000
64 31.4 | 16.6 1.88 536 284 32 4187 | 2218 250
266 | 304 | 154 0.47 518 263 8 4046 | 2054 62.5
1024 || 30.1 | 15.1 0.12 513 257 2 4011 | 2013 15.6

We can train a 7.5B model (like Llama?2) using only 4 V100-32GB GPUs
We can even train a 128B model using 64 V100-32GB GPUs




Future

e Efficiency Long context for LLMs

e Hybrid efficiency
o QLORA
o LongLoRA
o QMOE

e MOE and modularization
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Distributed Training and Memory Optimizations -
LOMO: Fuse gradient computation
and gradient update!



LOMO: Compute Gradient and Update Parameter in SGD

Algorithm 1 Fusion Update in LOMO

Require: model f(-) with L layers and p parameters, parameter @ € R? | learning rate v, max step
T', training dataset D, loss function £

1

2 Sample batch B = (z,y) C D

3 g« f(x,0) > Forward pass
B {+— L(y.9)

5 forl=1,..., 1 do > Backward propagation
6: 0, «+ [0, for 6, € layer [|

7 g! A (‘)gi

8 O 0, —axq

9: g1 + None > Clear gradients
10: end for

I1: end for

In detail, we can express the vanilla gradient descent as grad =dL /0p, p=p - Ir * grad, which is
a two-step process, computing the gradients first and updating it to the parameters. The fusion
versionisp=p-Ir* 0L/dp



LOMO: Computation Graph and Space Complexity

Afer Backward After Update
0 @ @ Memory of Gradients
Before Backward SGD 0(n)
OO @ @ @
Pused Backward Step 1 Fused Update Step 1
a1 G2 G3
LOMO ° @ @ e
G1 G2 Q G1 a2 G3
Pused Backward Step 2 Fused Update Step 2
° @ @ Memory of Gradients
o)
O @ a1 e = Gl G2 G3
In Memory Off Memory Updated Parameter
Fused Backward Step 3 Fused Update Step 3
° G2 G3 (0] G2 G3

Figure : Comparison of SGD and LOMO in backpropagation and parameter update stages.
Pi refers to the parameter of the model and Gi refers to the gradient corresponding to Pi.

LOMO fused gradient computation and parameter update in one step to minimize the size of gradient
tensors.



LOMO: Main results

* Memory Profile

AC Params Gradients Optim States Activations Total Memory

: X " — 45.61 147.02
AdamW v 12.55 12.55 75.31 1.79 102.20
X 75 . ﬁ 45.61 96.81

SGD v 12.55 12.55 25.10 179 51.99
X .8k " 45.61 59.40

LOMO v 12.55 0.24 0.00 1.79 14.58

Table : Memory usage (GB) when training LLaMA-7B under different settings.
AC refers toActivation Checkpointing.

¢ Downstream performance

Method Params RTE BoolQ WSC WIC MultiRC COPA Avg.

Zero-shot 7B 57.0 66.5 365 497 423 85.0 56.2
LoRA 7B 859 85.2 644 655 84.8 87.0 788
LOMO 7B 86.6 875 664 71.2 84.0 89.0 808
Zero-shot 13B 60.6 65.0 365 495 434 88.0 572
LoRA 13B 899 87.1 635 699 86.1 920 814
LOMO 13B 89.9 87.3 750 743 85.7 93.0 842
Zero-shot 30B 534 74.6 36.5  50.0 46.9 89.0 584
LoRA 30B 91.0 897 83.7 740 87.0 93.0 864
LOMO 30B 928 89.3 856 74.1 87.9 93.0 871 &
Zero-shot 65B  59.6 73.6 442 513 483 91.0 613
LoRA 65B  93.1 90.9 885 745 90.0 97.0  89.0
LOMO 65B 939 907 923 754 89.9 97.0 899

Table 3: Main results on SuperGLUE using LLaMA at all sizes (with 1,000 training examples).



QLoRA: Combine Quantization and Low-Rank Approximations

Full Finetuning LoRA QLoRA
(No Adapters)

Optimizer /_\

State
(32 bit)

0 0
= ] ] ! %
= I ) grvoenta

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow w=fp-

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

Key Idea: The LLM is loaded with 4bit. During training, the values are de-quantized to bf16 for processing.
Utilizing the features of LORA, the original model parameters can be locked and excluded from training. Only
a small number of LORA parameters are trained, which significantly reduces the required GPU memory.



QLORA: 4-bit NormalFloat Quantization

4-bit NormalFloat (NF4) an information- theoretlcally
optimal data type for normal distributions

Normal distributions
Mean =0
Standard deviations = 1

- Based on quantile
guantization techniques,
making data conform to a
N(0,1) distribution.

.83,0.77,0.7, 0.63, 0.57] 56,0.62, 0.68, 0.73,0.79, 0.85,0.91,0.97]  (Probability) - Adjusts weights to match
(z-score) the data type range by using
73,-0.53,-0.34,-0.17, 0, 0.15,0.3, 0.45, 0.62, 0.81, 1.04, 1.34, 1.85]  (Concatenation) Sca“ng factors and

maintaining zero points
during quantization.

4. Concatenate Set |, a zero value, and Set |l together

Image
Norah



QLoRA: Double Quantization

Weight
16 bit

Quantized
weight

Absmax

Process of quantizing the initial quantization constants again to reduce
memory overhead; each 64-parameter block shares one 32bit quantization
constant, resulting in an extra overhead of 0.5 bit per parameter.

L~ . constant Absmax

4bit | ==

0.5 bit

\

constant

Quantize again )
0.5 bit

\ J

1x 32-bit value for every 64
parameters

0.002-bit
_ 2nd
u Absmax
constant

\\ 0.125 Quantized

bit absmax
constant



Efficiency Beyond Transformers - Speculative
Sampling



Speculative Sampling - Single Token Prediction

Let’s look into some cases:

of Edinburgh

100B model 100B model

Geoffrey Hinton did his PhD Geoffrey Hinton did his PhD
at the University... at the University of...

- Case 1: Predicting “of” is very easy, maybe we should use a 1B model which is enough

- Case 2: Predicting “Edinburgh” requires knowledge, which can be difficult, maybe we should
use a 100B model

- This is key idea 1 behind: let small model deal with easy tokens, while large model deals with
difficult tokens



Speculative Sampling - Utilize Transformer Structure

Edinburgh at the University of Toronto

100B model 100B ¥odel

Geoffrey Hinton did his PhD

Geoffrey Hinton did his PhD
at the University of...

at the University of Toronto

We can give a transformer model multiple tokens at once, and let a large transformer model
check them in parallel, while it does not increase compute time at well

In this case, the probability for “Toronto” is low, cause the 100B model recognize it.

This is key idea 2: let large transformer models check error tokens!



Speculative Sampling - Algorithm

Mp = draft model ox Llama-2-7b-chat-hf
Mq = target model o0 Llama-2-70b-chat-hf

pf = prefix, K = 5 tokens

p.(x) = Mp(pf) Eeeeeeeeeeeee———) X

pz(x) = Mp(pf,xl) ) X2

ps(x) = My (pf, %1, %2, X3, %, ) =o—) X



Speculative Sampling - Algorithm

pi(x) = Mp(pf) Esssssssss—————) {1

p2(x) = My (pf, %) ee———) X, Run draft model

for K steps

pS(x) = Mp(pfr x17x27x3yx4) — x5

q1 (x), q> (.X'), qs3 (X), da (.X'), ds (x)r q6(x)

Run target model once
= Mq (pf' x11x2’x31x41x5)



Speculative Sampling - Algorithm

p1(x) = My, (pf) =————— x,

p2(x) = Mp(Pf,x1) — X

-
ps(x) = M, (pf,xq, %2, X3, %, ) === Xs5 nn_n“

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

q1(x), q2(x), q3(x), q4(x), g5(x), g6 (x)

= Mq (pf' X1,X2,X3, Xy, x5)



Speculative Sampling - Rejection Sampling

=EEEERE

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Case 1: If g(x) = p(x), then accept

Case 2: If g(x) < p(x), then accept with probability ax)

p(x)

In this case, we accept “dogs”, “love”, what about “chasing”? - we accept it with probability 0.8/0.9!



Speculative Sampling - Rejection Sampling

EEECEEE S

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Case 1: If g(x) = p(x), then accept

Case 2: If g(x) < p(x), then accept with probability ax)

p(x)

In this case, we accept “dogs”, “love”, what about “chasing”? - we accept it with probability 0.8/0.9,
maybe we should accept it!



Speculative Sampling - Rejection Sampling

EEECEEE S

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Case 1: If g(x) = p(x), then accept

Case 2: If g(x) < p(x), then accept with probability ax)

p(x)

In this case, we accept “dogs”, “love”, what about “chasing”? - we accept it with probability 0.8/0.9,
maybe we should accept it!



Speculative Sampling - Rejection Sampling

EEECEEE S

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Case 1: If g(x) = p(x), then accept

Case 2: If g(x) < p(x), then accept with probability ax)

p(x)

If we accept “chasing”, then what about “after”? The probability = 0.3/0.8, so maybe it should be
rejected.



Speculative Sampling - Rejection Sampling

=EEEERE

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Case 1: If g(x) = p(x), then accept

Case 2: If g(x) < p(x), then accept with probability ax)

p(x)

If we reject “after”, then we can sample a token from q(4)!



Speculative Sampling - Rejection Sampling

Actually, don’t sample g(x)

Adjusted distribution: (q(x) — p(x))+

We sample the 4th token by (q(4) - p(4))+!

Theoretically, we can ensure the token distribution is exactly q(x), so no loss in accuracy!



Speculative Sampling - #tokens generated in one pass

T T O N O

dogs love chasing after cars
p(x) 0.8 0.7 0.9 0.8 0.7
q(x) 0.9 0.8 0.8 0.3 0.8

Worst case: first token is rejected -> 1 token

Best case: all tokens accepted -> K+1 tokens



Speculative Sampling - Wall Time

RN -
L1 |11 | | JESE
HEEEEEEEENEENEE.

Wall time -



Speculative Sampling - Wall Time

o
Sampling Method Benchmark / Result Mean Token Time Speed Up b De ep Mind
ArS (Nucleus) 0.112 14.1ms/Token 1%
SpS (Nucleus) XSum (ROUGE-2) [ 114  7.52ms/Token 1.92x
ArS (Greedy) 0.157  14.1ms/Token 1x Recommends K = 3-4

XSum (ROUGE-2)

SpS (Greedy) 0.156 7.00ms/Token 2.01x

Finds 2-2.5x speedup

ArS (Nucleus) 45.1% 14.1ms/Token 1x
SpS (Nucleus) Humankval (100'Shot) 47.0% 5.73ms/Token 2.46x
\r
TASK M, TEMP v « SPEED
ENDE T5-SMALL % 0 7 0.75 3.4X
ENDE TS5-BASE 0 7 0.8 2.8X
ENDE TS5-LARGE 0 7 0.82 1.7X
Go gle Research ENDE  TS-sMaLL&« 1 7 0.62  2.6X
ENDE TS5-BASE 1 5 0.68 2.4X
ENDE TS-LARGE 1 3 0:71 1.4X
Recommends K = 3-7 CNNDM TS-SMALL* 0 5 0.65 3.1X
. CNNDM  T5-BASE 0 S5 10.73 3.0X
Finds 2-3.4x speedup CNNDM  TS-LARGE 0 3 074 22X
CNNDM T5-SMALL % | 5. 10.53 2.3X
CNNDM  TS5-BASE | 3 0.55 2.2X
CNNDM  TS5-LARGE 1 3 0.56 17X




System Support for Efficiency - Flash-
Attention



Flash-Attention Overview

Algorithm 0 Standard Attention Implementation

Require: Matrices Q. K.V € RV* in HBM.

. 1: Load Q.K by blocks from HBM, compute S = QK write S to HBM.
BaCkground KnOWIedge- GPU Structure 2: Read S from HBM. compute P = softmax(S), write P to HBM
- SRAM: High_speed Cache Memory 3: Load P and V by blocks from HBM, |compute O = PV, write O to HBM.
4: Return O.

- High-speed, volatile, limited capacity
- HBM: High Bandwidth Memory
- High speed, volatile, large capacity

Key ldea: Utilize Characteristics of Attention
- Improve flops, optimize for SRAM storage
- Reduce 10, optimize the data bandwidth and

Memdry Hierarchy with |

o GPU #1 GPU #N Bandwidth & Memory Size |
efficiency i
Attention Standard FlashAttention
Implementation: Gflops 66.6 75.2 —I
- Softmax: online softmax HBM R/W (GB) 40.3 4.4 —
- Online softmax optimization, increasing Runtims (ms) 41.7 7.3

computational efficiency
- Tiling: On-the-fly tiling (reducing computation)
- Reduce recomputation (save time and resources)



F I a S h - Atte n t i O n Algorithm 1 FLASHATTENTION

Require: Matrices Q. K.V € EV* in HBM, on-chip SRAM of size M.
1: Set block sizes B, = [%.l .B, = min {[%]d)
2: Initialize O = (0)yyg € BN (= (0)y € BN, m = (—0)y € BV in HBM.

. 3 Divide Q into T, = [%.‘ blocks Q,..... Qr, of size B, x d each, and divide K.V into T, = [%] blocks
NOtatlonS K..... K7 and V,..... Vg, of size B. x d each.
4: Divide O into T, blocks O,.. ... Oy, of size B, x d each, divide ¢ into T, blocks {;.. ... (7, of size B, each,
K divide m into T, blocks m,..... my, of size B, each.

for 1 < /<7, do
Load K;.V, from HBM to on-chip SRAM.
for 1 <i<T, do
Load Q;.0;. f;.m; from HBM to on-chip SRAM.

On chip, compute §;; = Q,K]'r € RBrxBe

S
On chip, compute i1;; = rowmax(8;;) . ]5'.1 = expl§, ij) € TB-xB, (pointwise), f,-j =
1‘:»\&'.&1|111(l",-_,-) € RE-,
On chip, compute m" = max(m. m;;) y O = emimmi v""fl"".""'(‘” € RE-,
Write 0; « diag((*" )M diag(£; e + c”'-"'f""?mPUV BM.
Write {; e (Y, m; e m}*" to HBM.
end for
nd for

Q eturn O.

0 l m

e =

© %




Algorithm 1 FrasuArTeNTION

I Require: Matrices Q. K.V € ®V* in HBM, on-chip SRAM of size M.
Flash-Attention et ok s B 2 [Ae) B =i (T

2. Initialize O = (0)yxy € BN (= (0)y € BN .m = (=o0)p € 2V in HBM.

3 Divide Q into T, = L‘L} blocks Q.. ... Qq, of size B, x d each, and divide K.V into T, = ["‘l] blocks
. K,..... Ky and V..., Vi, . of size B. x d each.
Sp“t BIOCkS 4: Divide O into 7, blocks O, . ... 0y, of size B, x d each, divide { into T, blocks ¢;,. ... {7, of size B, cach,
divide m into T, blocks m.. ... my, of size B, each.
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Algorithm 1 FLASHATTENTION
Require: Matrices Q. K.V € 2V* in HBM, on-chip SRAM of size M.

Flash_Attention l Set black sizes B. = [§5]. B, = min ([45].4).

. Initialize O = (M pxg € BV (= (Opn € BN .m = (—00)y € BV in HBM.

3: Divide Q into 7, = ’V%W blocks Qy.....Qy, of size B, x d each, and divide K.V into T, = [%—‘ blocks
Ki.....Ky and V.. ... Vi, of size B, x d each.
Spllt BIOCkS 1: l?l\.:irh- 0 Iil]lu"{‘, IJlml']:(ra 0;.....04 uf- -.1ft B, >(-u‘l¢>m'|I. divide ¢ into T, blocks ;. ..., {7, of size B, each
divide m into f, blocks My, ....my, of size H,. each.
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s for 1 < <7, do
i Load K;.V; from HBM to on-chip SRAM.
. " for 1 </ <7, do
FlaSh—Attentlon i Load Q;,0;, (;.m; from HBM to on-chip SRAM.
i On chip, compute §;; = Q,I\i ). GRS
I On chip. compute m,; = rowmax(S;;) ¢

- B
rowsum(P;;) e REr,

SOftmaX Reductlon : On chip, compute m!™™ = max(m;, m;;) €: 2 Y =M L PR L
1 Write O « diag({"") Ldiag(£;)e™i=™"" Q; 4 ¢™ii=—mi™ P;;V,) to HBM.
134 Write (; « ("%, m; & m"" to HBM.
end for
- end for
: Return 0.
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By P,{ = «xm.‘i,, = m;;) ¢ R BrxB,

(pointwise), (;; =

o B,
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Flash-Attention

Softmax Reduction
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online softmax 0, =

QKT
E}'r e Ry

for 1 <j<T7.do

Load K.V, from HBM to on-chip SRAM.

:‘; * 8,

o 8
= max(m;. ru,,}s

B,

{‘Hl'\'. -
() + oMii "y

o Pii o= exp(S;; = mij) €

new e
Pl {‘ + eMijmm

““P,,;V;) to HBM.

i
7 for 1 </ <7, do
8: Load Q;. 0;. ;.m; from HBM to on-chip SRAM.
9 On chip, compute S;; = Q, K’
10: On chip, compute m;; = 1<=\\m|\ib,,] € R
rowsum(P;;) € 25
11: On chip, compute "™
12: Write O; — l|i:1'.‘\{|f“" Wy diag aff;)e™ "
13: Write (; «— (% my = m* to HIBM.
end for
. end for
16: Return O.
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(pointwise), (
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B, x8,

LN}

(pointwise), (
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5 for 1 <7 <7, do
6. Load K;.V; from HBM to on-chip SRAM.
Fl h A M 7. forl1<i<T, do
aS - ttentlon ] Load Q;.0;.{;,m; from HBM to on-chip SRAM.
9 On chip, compute §;; = (!,K': ERaixesy
10 On chip, compute n;; = rowmax(S,;) € 2%, P;; = exp(S;; = m,;) € %
. rowsum(P;;) € B
SOftmaX RedUCtIOI’I 1 On chip, unn]mtv Y = max(mi. ;) € Br (Y=t B £ 4 @M=
12: Write O; « diag(£")~! (diag(£;)e™ """ 0 + "= P;;V ;) to HBM.
==1 13: Write ; — (/'Y mj — m!"" to HBM.
end for
end for
S 16: Return O.
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5 for 1 < j <7, do
6:  Load K;.V, from HBM to on-chip SRAM.

7. forl<i<T, do
FI h Att t. 8 Load Q;. Oy, ;. m; from HBM to on-chip SRAM.
aS - en Ion : On chip, compute S;; = Q,-Kj elRBx8a,
0: On chip. compute m;; = rowmax(8;;) € Rfr, P;; = exp(8;; = m;j) € BExBe (pointwise). (;; =
rowsum(P;;) € & b,
. 1: On chip, compute m!"% = max(m;.sir;;) € R (1 = M= g 4 M= (€ BB
SOftmaX Reductlon 2 Write “‘ — l“-'l_'.',(l{:“.u] I(tli:lg(fllf‘m‘ m""""'()' + ¢Mii e p”V!} to HBM. L
(Numerical Stable) 3: Write (; < ('Y, m; & m!"" 1o HBM, -~
end for
end for
S 16: Return O.
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5 forl </ <7, do
6:  Load K;.V; from HBM to on-chip SRAM.
forl <i =T, do

Flash-Attention L O s, e
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Softmax Reduction 2 Wiitd, e ding(@ )1 m; = max(m?, s e — — -
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i: Return O,
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Flash-Attention

Summary: Split blocks, Update Softmax, Complexity= O(Nd - Nd/M) = O(N?d?/M)

Algorithm 1 FLASHATTENTION

Require: Matrices Q. K.V € RV*¢ in HBM, on-chip SRAM of size M.

1:
2:
3:

SNe o

® »

15:
16:

Set block sizes B, = [%I-].B,. = min (H"ﬂ.d).

Initialize O = (0)yxa € EN*? £ = (0)y € BN, m = (=o0)y € BN in HBM.

Divide Q into 7, = [,’:—'] blocks Q;..... Qy, of size B, x d each, and divide K.V in to 7, = [,’;—’] blocks
Ki;ioea K7 and Vy. ..., V., of size B. x d each.

: Divide O into 7, blocks O,,. ... Oy, of size B, x d each, divide ( into T, blocks (.. ... (1, of size B, each,
divide m into T, blocks m;...., mr, of size B, each.
: for 1 <j<T.do
Load K, V; from HBM to on-chip SRAM.
for 1 <i<T7, do

Load Q;.0;, {;.m; from HBM to on-chip SRAM.
On chip, compute S;; = QK] € RF*Fe,
On chip, compute m;; = rowmax(S;;) € BB, P,—,— = exp(S;j — m;j) € RBrxB. (pointwise), [ij =
rowsum( P,-j) € RE-,
On chip, compute m™" = max(m;, m;;) € R (" = MM € @M f,»,- e R5-,
Write O; « diag(£")~" (diag((; )e™i=m ™ Q) + ¢'">"1_"“""‘w]5,-jVj) to HBM.
Write 6; « ('Y, m; < m!*" to HBM.
end for
end for
Return O.

Outer Loop
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Inner Loop
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