
CSC6203/CIE6021:

Large Language Model

Lecture 9: LLM Agents

Winter 2023
Benyou Wang

School of Data Science

Recap…

3[1] Bergen, Benjamin K. Louder than words: The new science of how the mind makes meaning. Basic Books, 2012

Human processes multimodal infos simultaneously

CLIP

● [CLIP] Learning Transferable Visual Models From Natural Language Supervision (OpenAI, 2021)

https://arxiv.org/abs/2103.00020

Flamingo's high-level architecture

● Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

https://arxiv.org/abs/2204.14198

MLLM-Bench: evaluating Multi-modal LLMs using GPT-4V

Wentao Ge†, Shunian Chen†, Guiming Chen†, Junying Chen†, Zhihong Chen∗, Shuo Yan, Chenghao Zhu, Ziyue Lin, Wenya Xie, Xidong

Wang, Anningzhe Gao, Zhiyi Zhang, Jianquan Li, Xiang Wan, Benyou Wang. MLLM-Bench, Evaluating Multi-modal LLMs using GPT-4V.

MLLM-Bench: evaluating Multi-modal LLMs using GPT-4V

Wentao Ge†, Shunian Chen†, Guiming Chen†, Junying Chen†, Zhihong Chen∗, Shuo Yan, Chenghao Zhu, Ziyue Lin, Wenya Xie, Xidong

Wang, Anningzhe Gao, Zhiyi Zhang, Jianquan Li, Xiang Wan, Benyou Wang. MLLM-Bench, Evaluating Multi-modal LLMs using GPT-4V.

Large space to be improved in MLLMs, w.r.t. GPT-4V

Today’s lecture

Contents in this lecture

● Overall framework of agents

● Four elements

○ Planning

○ Tools

○ Memory

○ Action

● Recap of agent

● Proof of concepts

● Our research

What is LLM Agents

On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

Explorations of Visual-Language Model on Autonomous Driving

https://arxiv.org/abs/2311.05332

What is LLM Agents

The Rise and Potential of Large Language Model Based Agents: A Survey

Scenario of an envisioned society composed of AI agents

In the kitchen, one agent

orders dishes, while

another agent is responsible

for planning and solving

the cooking task. At the

concert, three agents are

collaborating to perform in

a band. Outdoors, two

agents are discussing

lantern-making, planning

the required materials,

and finances by selecting

and using tools. Users can

participate in any of these

stages of this social activity

https://arxiv.org/abs/2309.07864

What is LLM Agents

https://docs.agpt.co/

Complete Guide To Setup AutoGPT

Let an LLM decide what to do

over and over, while feeding the

results of its actions back into the

prompt. This allows the program to

iteratively and incrementally work

towards its objective.

https://docs.agpt.co/

The framework of agents

A high-level picture

Agent Environment

Action

Perception and feedback

LLM for the cognition

e.g. planning, decision making

A high-level picture

Agent Environment

Action

Perception and feedback

LLM for the cognition

e.g. planning, decision making

Perception

A high-level picture

Agent Environment

Action

Perception and feedback

LLM for the cognition

e.g. planning, decision making

Action and feedback helps evolution of LLM agents

Use cases of LLM agents

The use cases for LLM agents, or Language Model-based agents, are vast and diverse. These

agents, powered by large language models (LLMs), can be used in various scenarios, including:

1. Single-agent applications

2. Multi-agent systems

3. Human-Agent cooperation

Category

https://gptpluginz.com/llm-agents/

https://gptpluginz.com/llm-agents/

LLM agents can be utilized as personal assistants to assist users in breaking free from daily

tasks and repetitive labor. They can analyze, plan, and solve problems independently, reducing

the work pressure on individuals and enhancing task-solving efficiency.

Single-agent applications

https://github.com/langchain-ai/langchain

https://github.com/langchain-ai/langchain

Multi-agent systems: LLM agents can interact with each other in a collaborative or competitive manner.

This enables them to achieve advancement through teamwork or adversarial interactions. In these systems,

agents can work together on complex tasks or compete against each other to improve their performance.

Multi-agent systems

Play Werewolf （狼人杀）

Yuzhuang Xu , Shuo Wang, Peng Li,, Fuwen Luo, Xiaolong Wang , Weidong Liu, Yang Liu. Exploring Large Language Models for Communication

Games: An Empirical Study on Werewolf. https://arxiv.org/pdf/2309.04658.pdf

Human-Agent cooperation: LLM agents can interact with humans, providing them with

assistance and performing tasks more efficiently and safely.

Example: interactively write code together with ChatGPT.

Human-Agent cooperation

https://gptpluginz.com/llm-agents/

https://gptpluginz.com/llm-agents/

The four Elements

Here is a famous picture from Lilian Weng (from OpenAI)

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

Planning:

● Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable

subgoals, enabling efficient handling of complex tasks.

● Reflection and refinement: The agent can do self-criticism and self-reflection over past

actions, learn from mistakes and refine them for future steps, thereby improving the quality

of final results.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

Memory:

● Short-term memory: all the in-context learning is

utilizing short-term memory of the model to learn.

● Long-term memory: this provides the agent with

the capability to retain and recall (infinite)

information over extended periods, often by

leveraging an external vector store and fast retrieval.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

Tool use:

● The agent learns to call external APIs for extra information that is missing from the model

weights (often hard to change after pre-training), including current information, code

execution capability, access to proprietary information sources and more.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

https://lilianweng.github.io/posts/2023-06-23-agent/

Action:

● The agent's ability to execute actions in the real or virtual world is crucial. This can range

from performing tasks in a digital environment to controlling physical robots or devices.

The execution phase relies on the agent's planning, memory, and tool use to carry out

tasks effectively and adaptively.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/
https://gptpluginz.com/llm-agents/

● Language Mastery: Their inherent capability to both

comprehend and produce language ensures seamless

user interaction.

● Decision-making: LLMs are equipped to reason and

decide, making them adept at solving intricate issues.

● Flexibility: Their adaptability ensures they can be

molded for diverse applications.

● Collaborative Interactions: They can collaborate

with humans or other agents, paving the way for

multifaceted interactions.

Why LLM Agents stand out?

Element 1: Planning

What is planning

How to a solve a complicated task sequentially?

Multi-step task: How to put an elephant into a fridge?
- complicated
- it involves multple steps
- it usually uses external tools (e.g., operate the fridge)

One-step task: translate an paragraph
- simple
- usually without interaction

● GSM8K (math word problem)

● GAME24

Two simple examples

They are both multi-step problems!

Examples of Planning

Task Decomposition

Self-Reflection/self-refinement

Planning with Task Decomposition

Task Decomposition: Chain of thought

Chain of Thought (CoT) has become a standard prompting technique for enhancing model

performance on complex tasks. The model is instructed to “think step by step” to utilize more test-

time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big

tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking

process.

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

https://arxiv.org/abs/2201.11903

Task Decomposition: Tree of Thoughts

Tree of Thoughts extends CoT by exploring multiple reasoning possibilities at each step. It first

decomposes the problem into multiple thought steps and generates multiple thoughts per step,

creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first

search) with each state evaluated by a classifier (via a prompt) or majority vote.

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

https://arxiv.org/abs/2305.10601

● Resource Intensity: Implementing search methods like ToT is more

resource-intensive, incurring higher costs compared to simpler sampling

methods.

Task Decomposition: Tree of Thoughts

Tree of Thoughts: Deliberate Problem Solving with Large Language Models

https://arxiv.org/abs/2305.10601

Our research: better verification

SOTA performance on mathematical reasoning

Fei Yu, Anningzhe Gao, Benyou Wang. Outcome-supervised Verifiers for Planning in Mathematical Reasoning.

https://arxiv.org/pdf/2311.09724.pdf

Task Decomposition: LLM+P

LLM+P involves relying on an external classical planner to do long-horizon planning. This approach

utilizes the Planning Domain Definition Language (PDDL) as an intermediate interface to describe

the planning problem.

LLM+P: Empowering Large Language Models with Optimal Planning Proficiency

https://arxiv.org/abs/2304.11477

Task Decomposition: LLM+P

In the PDDL process, LLM

1) translates the problem into “Problem PDDL”;

2) requests a classical planner to generate a PDDL plan based on

an existing “Domain PDDL”;

3) translates the PDDL plan back into natural language.

Essentially, the planning step is outsourced to an external tool,

assuming the availability of domain-specific PDDL and a suitable

planner.

LLM+P: Empowering Large Language Models with Optimal Planning Proficiency

https://arxiv.org/abs/2304.11477

From today 机器之心

12] Jie, Z., Luong, T.Q., Zhang, X., Jin, X. and Li, H., 2023. Design of a Chain-of-Thought in Math Problem Solving. arXiv preprint arXiv:2309.11054.

Python > Wolfram

Planning with Self-Reflection

Self-Reflection

Self-reflection is a vital aspect that allows autonomous agents to improve iteratively by refining

past action decisions and correcting previous mistakes. It plays a crucial role in real-world tasks

where trial and error are inevitable.

Self-Reflection: ReACT

ReACT integrates reasoning and acting within LLM by extending the action space to be a

combination of task-specific discrete actions and the language space. The former enables LLM

to interact with the environment (e.g. use Wikipedia search API), while the latter prompting LLM

to generate reasoning traces in natural language.

The ReAct prompt template incorporates explicit steps for LLM to think, roughly formatted as:

ReAct: Synergizing Reasoning and Acting in Language Models

https://arxiv.org/abs/2210.03629

Self-Reflection: ReACT

In both experiments on knowledge-intensive tasks and decision-making tasks, ReAct works better

than the Act-only baseline where Thought: … step is removed.

ReAct: Synergizing Reasoning and Acting in Language Models

https://arxiv.org/abs/2210.03629

Self-Reflection: Chain of Hindsight

Chain of Hindsight (CoH) encourages the model to improve on its own outputs by explicitly

presenting it with a sequence of past outputs, each annotated with feedback.

To avoid overfitting, CoH adds a regularization term to maximize the log-likelihood of the pre-

training dataset. To avoid shortcutting and copying (because there are many common words in

feedback sequences), they randomly mask 0% - 5% of past tokens during training.

Chain of Hindsight Aligns Language Models with Feedback

https://arxiv.org/abs/2302.02676

Element 2: tools
Introduction to tools in LLMs

Human + tool use: motivations

As humans, we have limited time and memory, feel

tired, and have emotions.

● Human + tool use
○ Enhanced scalability

○ Improved consistency

○ Greater interpretability

○ Higher capacity and productivity

LLMs + tool use: motivations

● Just like human, LLMs suffer from the similar

limitations. But in the same way,

● LLMs + tool use
○ Enhanced scalability

○ Improved consistency

○ Greater interpretability

○ Higher capacity and productivity

Element 2: tools
Recent Works

In the case of calculator

● The early version GPT-4 struggled for numeric calculator

● Using LLM to deal with this, it is a waste of network capacity!

LLMs + tool use in perspective of executable language grounding

Ground language models into executable actions

● Mapping natural language instructions into code or actions executable within various

environments such as databases, web applications, and robotic physical world.

● LM (planning and reasoning) + actions

Data analysis Web/Apps

Robotic physical world

https://openai.com/blog/chatgpt-plugins

https://code-as-policies.github.io/

https://openai.com/blog/chatgpt-plugins
https://code-as-policies.github.io/

LLMs + tool use in perspective of executable language grounding

LLMs + tool use in executable language grounding tasks

Inputs

● Language: user question/request

● Toolkit: code, APIs to search engines, self-defined functions, expert models…

● Environment: databases, IDE, web/apps, visual and robotic physical world…

Outputs

● Grounded reasoning code/action seq that can be executed in the corresponding environment

○ What tools to select, when and how to use the selected tools

PAL: Program-aided Language Models

Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks

LLMs + tool: PAL, PoT

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588

https://openai.com/blog/chatgpt-plugins

Mind2Web: Towards a Generalist Agent for the Web

LLMs + webs/apps or personalized functions: ChatGPT-Plugins

https://openai.com/blog/chatgpt-plugins
https://arxiv.org/abs/2306.06070

ReAct: Synergizing Reasoning and Acting in Language Models

LLMs + webs/apps or personalized functions: ReAct

https://arxiv.org/abs/2210.03629

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

Lots of AI models are available in different fields and modalities,

but cannot handle complex artificial intelligence tasks.

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

The system comprises of 4 stages:

● Task Planning: LLM analyze the user's

requests, breaking them down into solvable

tasks through prompts.

● Model Selection: LLM is presented with a

list of models to choose from and distributes

the tasks to expert models. LLM.

● Task Execution: Expert models execute on

the specific tasks and log results.

● Response Generation: LLM receives the

execution results and provides summarized

results to users.

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

Evaluation for task planning abilities:

● Single Task: The user request involves only one task.

● Sequential Task: The user's request needs to be broken down into a sequence of multiple

subtasks.

● Graph Task: The user's request needs to be decomposed into a directed acyclic graph.

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

Challenges to put HuggingGPT into real world usage

1) Efficiency improvement is needed as both LLM inference rounds and interactions with other

models slow down the process;

2) It relies on a long context window to communicate over complicated task content;

3) Stability improvement of LLM outputs and external model services.

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

Code as Policies: Language Model Programs for Embodied Control

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

ProgPrompt: Generating Situated Robot Task Plans using Large Language Models

Mind's Eye: Grounded Language Model Reasoning through Simulation

LLMs + code, robotic arm, expert models: Code as Policies

https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2210.05359

TALM: Tool Augmented Language Models

TALM: Tool Augmented Language Models

LLMs + training for tool use: TALM

https://arxiv.org/abs/2205.12255

Toolformer: Language Models Can Teach Themselves to Use Tools

LLMs + training for tool use: Toolformer

https://arxiv.org/abs/2302.04761

LLMs + training for tool use: Toolformer

Toolformer: Language Models Can Teach Themselves to Use Tools

https://arxiv.org/abs/2302.04761

Element 2: tools
Evaluation of tools in LLMs

API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs

Evaluation: API-Bank

API-Bank is a benchmark for evaluating the performance of tool-augmented LLMs. It contains 53

commonly used API tools, a complete tool-augmented LLM workflow, and 264 annotated

dialogues that involve 568 API calls.

https://arxiv.org/abs/2304.08244

Evaluation index

Level-1: Evaluate LLM's ability to call the API (Accuracy); given a description of the API, the

model needs to determine whether to call the API.

Level-2: Further evaluate LLM’s ability to retrieve APIs (Rouge); the model needs to retrieve

APIs that may solve user needs.

Level-3: Examine the ability of LLM planning API (number of turns).

Evaluation: API-Bank

API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs

https://arxiv.org/abs/2304.08244

GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction

Evaluation: GPT4Tools

https://arxiv.org/abs/2305.18752

● Successful Rate of Thought measures whether the predicted decision matches the

groundtruth decision.

● Successful Rate of Action measures whether the predicted tool name is in agreement with

the name of the ground truth tool.

● Successful Rate of Arguments evaluates whether the predicted arguments match the ground-

truth arguments.

● Successful Rate measures whether a chain of actions are executed successfully, which

requires the correctness of thought, tool name, and tool arguments.

Extension-3 Evaluation: GPT4Tools

GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction

https://arxiv.org/abs/2305.18752

Element 2: tools
Challenges and future work

Challenges and future work

● Complexity: more complex domain professional/unseen tools?

● Interactivity: go beyond single turn?

● Evaluation: multiple possible solutions? Real-time interactive evaluation?

● Efficiency: smaller models?

● Reliability: know when to abstain, know its capacity, memorizing and querying tools?

● Others

○ Better tool API design/tool making?

○ Personalization?

○ ……

Element 3: Memory

1. Sensory Memory: This is the earliest stage of memory, providing the ability to retain impressions of

sensory information (visual, auditory, etc) after the original stimuli have ended. Sensory memory typically

only lasts for up to a few seconds. Subcategories include iconic memory (visual), echoic memory

(auditory), and haptic memory (touch).

2. Short-Term Memory (STM) or Working Memory: It stores information that we are currently

aware of and needed to carry out complex cognitive tasks such as learning and reasoning. Short-term

memory is believed to have the capacity of about 7 items (Miller 1956) and lasts for 20-30 seconds.

3. Long-Term Memory (LTM): Long-term memory can store information for a remarkably long time,

ranging from a few days to decades, with an essentially unlimited storage capacity.

There are two subtypes of LTM:

a. Explicit / declarative memory: This is memory of facts and events, and refers to those memories

that can be consciously recalled, including episodic memory (events and experiences) and semantic

memory (facts and concepts).

b. Implicit / procedural memory: This type of memory is unconscious and involves skills and

routines that are performed automatically, like riding a bike or typing on a keyboard.

LLM Agent Memory: Types of Memory in human brains

LLM Agent Memory: Types of Memory in LLMs

1. Sensory Meory: learning embedding representations for raw inputs, including text, image or

other modalities; [Vision encoder/speech encoder]

2. Short-Term Memory (STM): in-context learning. It is short and finite, as it is restricted by

the finite context window length of Transformer. [prompt engineering]

3. Long-Term Memory (LTM): the external vector store that the agent can attend to at query

time, accessible via fast retrieval. [Retrieval-augmented LMs]

Element 3: memory

Introduction to Retrieval-Augmented LMs (RAG)

Retrieval-based language models (LMs)
Retrieval-based LMs = Retrieval + LMs

● It is a language model

● It retrieves from an external datastore (at least during inference time)

（Also referred to semiparametric

and non-parametric models)

Why retrieval-based LMs?
LLMs can’t memorize all (long-tail) knowledge in their parameters

List 5 important papers authored by Geoffrey Hinton

Geoffrey Hinton is a renowned computer scientist …
Here are five important papers authored by him:

1. "Learning Internal Representations by Error
Propagation" (with D. E. Rumelhart and R. J.
Williams) - This paper, published in 1986, ..

2. "Deep Boltzmann Machines" (with R.
Salakhutdinov) - Published in 2009, ..

…

4. "Deep Learning" (with Y. Bengio and A. Courville)
- Published as a book in 2016,…

5. "Attention Is All You Need" (with V. Vaswani, N.
Shazeer, et al.) - Published in 2017, this paper
introduced the Transformer model,…

When Not to Trust Language Models

What is Kathy Saltzman’s occupation?

GPT-3 davinci-003: 20%-30% accuracy

https://arxiv.org/pdf/2212.10511.pdf

Why retrieval-based LMs?
LLMs’ knowledge is easily outdated and hard to update

Who is the CEO of Twitter?

As of my knowledge cutoff in September 2021, the
CEO of twitter is Jack Dorsey….

When Not to Trust Language Models

● Exsiting knowledge editing methods are

still NOT scalable (active research!)

● The datastore can be easily updated and

expanded - even without retraining!

https://arxiv.org/pdf/2212.10511.pdf

Why retrieval-based LMs?
LLMs’ output is challenging to interpret and verify

Can trace knowledge source

from retrieval results - better

interpretability & control

Generating text with citations

WebGPT: Browser-assisted question-answering with human feedback

Teaching language models to support answers with verified quotes

https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2203.11147

Why retrieval-based LMs?
LLMs’ output is challenging to interpret and verify

Why retrieval-based LMs?
LLMs are shown to easily leak private training data

Individualization on private data by storing it in the datastore

Extracting Training Data from Large Language Models

https://arxiv.org/abs/2012.07805

Why retrieval-based LMs?
LLMs are large and expensive to train and run

e.g., RETRO (Borgeaud et al., 2021): “obtains comparable

performance to GPT-3 on the Pile, despite using 25x fewer

parameters”

Long-term goal: can we possibly reduce the training

and inference costs, and scale down the size of LLMs?

https://arxiv.org/abs/2112.04426

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

An entire field of

study on how to get

similarity function

better

Definition of Retrieval-based LM
A language model (LM) that uses an external datastore at test time

Software: FAISS, Distributed FAISS, SCaNN, etc…

Definition of Retrieval-based LM
Software: FAISS, Distributed FAISS, SCaNN, etc…

https://github.com/facebookresearch/faiss/wiki

https://github.com/facebookresearch/faiss/wiki

Questions to answer

What’s the query &

when do we retrieve?

Questions to answer

What’s the query &

when do we retrieve?

What do we retrieve?

Questions to answer

What’s the query &

when do we retrieve?

What do we retrieve?

How do we use

retrieval?

Popular Retrieval-based LMs

Retrieval-based LMs: REALM: Retrieval-Augmented Language Model Pre-Training [link]

x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

https://arxiv.org/abs/2002.08909

x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

World Cup 2022 was … the increase to [MASK] in 2026.

Retrieval-based LMs: REALM: Retrieval-Augmented Language Model Pre-Training [link]

https://arxiv.org/abs/2002.08909

x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

World Cup 2022 was … the increase to [MASK] in 2026.

FIFA World Cup 2026 will expand to 48

teams

+

Retrieval-based LMs: REALM: Retrieval-Augmented Language Model Pre-Training [link]

https://arxiv.org/abs/2002.08909

Recent research on Retrieval-based LMs
REALM: Retrieve Stage

Recent research on Retrieval-based LMs
REALM: Retrieve Stage

Recent research on Retrieval-based LMs
REALM: Retrieve Stage

Recent research on Retrieval-based LMs
REALM: Read Stage

Recent research on Retrieval-based LMs
REALM: Read Stage

Recent research on Retrieval-based LMs
REALM: Read Stage

Recent research on Retrieval-based LMs
REALM: Retrieval-Augmented Language Model Pre-Training [link]

● What to retrieve?

○ Chunks

○ Tokens

○ Others

● How to use retrieval?

○ Input layer

○ Intermediate layers

○ Output layer

● When to retrieve?

○ Once

○ Every n tokens (n>1)

○ Every tokens

https://arxiv.org/abs/2002.08909

Recent research on Retrieval-based LMs
REALM and subsequent work

● REALM (Guu et al 2020): MLM followed by fine-tuning, focusing on open-domain QA

● DPR (Karpukhin et al 2020): Pipeline training instead of joint training, focusing on open-

domain QA (no explicit language modeling)

● RAG (Lewis et al 2020): “Generative” instead of “masked language modeling”, focusing on

opendomain QA & knowledge intensive tasks (no explicit language modeling)

● Atlas (Izcard et al 2022): Combine RAG with retrieval-based language model pre-training

based on the encoder-decoder architecture (more to come in Section 4), focusing on open-

domain QA & knowledge intensive tasks

Papers that follow this approach focusing on LM perplexity have come out quite recently

(Shi et al. 2023, Ram et al. 2023)

Recent research on Retrieval-based LMs

Retrieval helps over all sizes of LMs

Perplexity: The lower the better

Recent research on Retrieval-based LMs
Summary of recent works

Recent research on Retrieval-based LMs
Training methods for retrieval-based LMs

● Independent training

● Sequential training

● Joint training w/ asynchronous index update

● Joint training w/ in-batch approximation

Recent research on Retrieval-based LMs
Training methods for retrieval-based LMs

● Independent training

● Sequential training

● Joint training w/ asynchronous index update

● Joint training w/ in-batch approximation

Training methods for retrieval-based LMs

Independent training

Retrieval models and language models are trained independently

- Training language models

- Training retrieval models
Sparse retrieval models: TF-IDF / BM25

No training needed!

Dense retrieval models: DPR

Contrastive learning with “in-batch”

nesgatives

Training methods for retrieval-based LMs

Independent training

Each component can be improved separately

Training methods for retrieval-based LMs

Independent training

Work with off-the-shelf models (no extra training required)

Each part can be improved independently

LMs are not trained to leverage retrieval

Retrieval models are not optimized for LM tasks/domains

Recent research on Retrieval-based LMs
Training methods for retrieval-based LMs

● Independent training

● Sequential training

● Joint training w/ asynchronous index update

● Joint training w/ in-batch approximation

Training methods for retrieval-based LMs

Sequential training

- One component is first trained independently and then fixed

- The other component is trained with an objective that depends on the first one

Training methods for retrieval-based LMs

Sequential training

- One component is first trained independently and then fixed

- The other component is trained with an objective that depends on the first one

Training methods for retrieval-based LMs

Sequential training

Work with off-the-shelf components (either a large index or a powerful LM)

LMs are trained to effectively leverage retrieval results

Retrievers are trained to provide text that helps LMs the most

One component is still fixed and not trained

Recent research on Retrieval-based LMs
Training methods for retrieval-based LMs

● Independent training

● Sequential training

● Joint training w/ asynchronous index update

● Joint training w/ in-batch approximation

Training methods for retrieval-based LMs

Challenges of updating retrieval models

Recent research on Retrieval-based LMs
Training methods for retrieval-based LMs

● Independent training

● Sequential training

● Joint training w/ asynchronous index update

● Joint training w/ in-batch approximation

Training methods for retrieval-based LMs

Joint training w/ asynchronous index update

- Retrieval models and language models are trained jointly

- Allow the index to be “stale”; rebuild the retrieval index every T steps

Training methods for retrieval-based LMs

Joint training w/ asynchronous index update

Asynchronous index update

REALM: Retrieval-Augmented Language Model Pre-Training

Leveraging Passage Retrieval with Generative Models for

Open Domain Question Answering

https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2007.01282

Recent research on Retrieval-based LMs
Training methods for retrieval-based LMs

● Independent training

● Sequential training

● Joint training w/ asynchronous index update

● Joint training w/ in-batch approximation

Training methods for retrieval-based LMs

Joint training w/ in-batch approximation

- Retrieval models and language models are trained jointly

- Use “in-batch index” instead of full index

Training methods for retrieval-based LMs

Joint training w/ in-batch approximation

Nonparametric Masked Language Modeling

Training Language Models with Memory Augmentation

https://arxiv.org/abs/2212.01349
https://arxiv.org/abs/2205.12674

Training methods for retrieval-based LMs

Joint training

End-to-end trained — each component is optimized

Good performance

Training is more complicated (async update, overhead, data batching, etc)

Train-test discrepancy still remains

Training methods for retrieval-based LMs

Summary

Element 4: action

In the construction of the agent, the action module receives action sequences sent by the

planning module and carries out actions to interact with the environment.

Action: Introduction

In the pursuit of Artificial General Intelligence (AGI), the embodied agent is considered a
pivotal paradigm while it strives to integrate model intelligence with the physical world.

Action: Embodied AI

Embodied AI should be capable of actively perceiving, comprehending, and interacting with

physical environments, making decisions, and generating specific behaviors to modify the

environment based on LLM’s extensive internal knowledge. We collectively term these as

embodied actions, which enable agents’ ability to interact with and comprehend the world in a

manner closely resembling human behavior

Action: Embodied AI

The potential of LLM-based agents for embodied actions.

● Cost efficiency: Some on-policy algorithms struggle with sample efficiency as they

require fresh data for policy updates while gathering enough embodied data for high-

performance training is costly and noisy.

● Embodied action generalization: An agent’s competence should extend beyond specific

tasks. When faced with intricate, uncharted real-world environments, it’s imperative that

the agent exhibits dynamic learning and generalization capabilities

● Embodied action planning: Planning constitutes a pivotal strategy employed by humans

in response to complex problems as well as LLM-based agents.

Action: Embodied AI

PaLM-E transfers knowledge from visual-language domains into embodied reasoning – from

robot planning in environments with complex dynamics and physical constraints, to answering

questions about the observable world.

Embodied AI: PaLM-E: An Embodied Multimodal Language Model

PaLM-E: An Embodied Multimodal Language Model

https://arxiv.org/abs/2303.03378

Recap of Agent

Recap1: four key components of LLM Agent

A Survey on Large Language Model based Autonomous Agents

Recap2: the development of LLM agents

https://arxiv.org/abs/2308.11432

A Survey on Large Language Model based Autonomous Agents

After going through key ideas and demos of building LLM-centered agents, here are couple common limitations:

1. Finite context length: The restricted context capacity limits the inclusion of historical information,

detailed instructions, API call context, and responses. The design of the system has to work with this

limited communication bandwidth, while mechanisms like self-reflection to learn from past mistakes would

benefit a lot from long or infinite context windows. Although vector stores and retrieval can provide access

to a larger knowledge pool, their representation power is not as powerful as full attention.

2. Challenges in long-term planning and task decomposition: Planning over a lengthy history and

effectively exploring the solution space remain challenging. LLMs struggle to adjust plans when faced with

unexpected errors, making them less robust compared to humans who learn from trial and error.

3. Reliability of natural language interface: Current agent system relies on natural language as an interface

between LLMs and external components such as memory and tools. However, the reliability of model

outputs is questionable, as LLMs may make formatting errors and occasionally exhibit rebellious behavior

(e.g. refuse to follow an instruction). Consequently, much of the agent demo code focuses on parsing

model output.

Recap3: challenges

https://arxiv.org/abs/2308.11432

● Langchain: This is a framework that allows you to build applications with LLMs through

composability. You can use different agents for different data types, such as

● AutoGen: AutoGen is a framework that enables development of LLM applications using

multiple agents that can converse with each other to solve tasks.

● OpenAgents is an open platform for using and hosting language agents in the wild of

everyday life. Language agents are systems that can understand and communicate in natural

language, such as chatbots, voice assistants, or conversational AI.

● ChatDev is a project that aims to create customized software using natural language idea

(through LLM-powered multi-agent collaboration).

https://gptpluginz.com/llm-agents/

Extension: frameworks for LLM agent

https://gptpluginz.com/llm-agents/

Proof of concepts

On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

POC1: Autonomous driving using GPT-4V

Explorations of Visual-Language Model on Autonomous Driving

https://arxiv.org/abs/2311.05332

On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

POC1: Autonomous driving using GPT-4V

Understanding ReasoningEnvironment
● Traffic Participants

● Time

● Weather

● Traffic light

● Traffic signs

● …

Planning

Tools

Action

Memory

https://arxiv.org/abs/2311.05332

POC1: Autonomous driving using GPT-4V Understanding

POC1: Autonomous driving

using GPT-4V
Reasoning

POC1: Autonomous

driving using GPT-

4V

Planning

POC1: Autonomous driving

using GPT-4V
Tool -> Action

Our research

Our research: Online Training of Large Language Models: Learn while Chatting

(Agent Memory Related)

Online-training can convert specific short-term memory into long-term memory

efficiently and effectively.

Our research: Modularization Makes Language Models Easier to Use Tools.

(Agent Tool Related)

Modularization is an effective way to help models quickly learn from multiple tools

Acknowledgements

● https://github.com/Paitesanshi/LLM-Agent-Survey
● https://github.com/WooooDyy/LLM-Agent-Paper-List
● Generative Agents: Interactive Simulacra of Human Behavior.

● https://wenting-zhao.github.io/complex-reasoning-tutorial/

● https://acl2023-retrieval-lm.github.io/

● https://github.com/xlang-ai/llm-tool-use

https://github.com/Paitesanshi/LLM-Agent-Survey
https://github.com/WooooDyy/LLM-Agent-Paper-List
https://arxiv.org/abs/2304.03442
https://wenting-zhao.github.io/complex-reasoning-tutorial/
https://acl2023-retrieval-lm.github.io/
https://github.com/xlang-ai/llm-tool-use

LLMs + tool use in perspective of executable language grounding

Binding Language Models in Symbolic Languages

Binder is a training-free neural-symbolic framework that maps the task input to an executable Binder

program that

(1) allows binding API calls to GPT-3 Codex into SQL/Python,

(2) is executed with SQL/Python Interpreter + GPT-3 Codex to derive the answer.

Project website: https://lm-code-binder.github.io, ICLR 2023

https://lm-code-binder.github.io

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Extension-1: LLM as tool maker

Large Language Models as Tool Makers

LATM: Large Language Models as Tool Makers

https://arxiv.org/abs/2305.17126

Self-Reflection: Reflexion

Reflexion is a framework to equips agents with dynamic memory and self-reflection capabilities to

improve reasoning skills. Reflexion has a standard RL setup, in which the reward model provides a

simple binary reward and the action space follows the setup in ReAct where the task-specific

action space is augmented with language to enable complex reasoning steps. After each action at,

the agent computes a heuristic ht and optionally may decide to reset the environment to start a new

trial depending on the self-reflection results.

Reflexion: Language Agents with Verbal Reinforcement Learning

https://arxiv.org/abs/2303.11366

Self-Reflection: Reflexion

Self-reflection is created by showing two-shot examples to LLM and each example is a pair of

(failed trajectory, ideal reflection for guiding future changes in the plan). Then reflections are

added into the agent’s working memory, up to three, to be used as context for querying LLM.

Reflexion: Language Agents with Verbal Reinforcement Learning

https://arxiv.org/abs/2303.11366

Self-Reflection: Chain of Hindsight

Chain of Hindsight (CoH) encourages the model to improve on its own outputs by explicitly

presenting it with a sequence of past outputs, each annotated with feedback.

To avoid overfitting, CoH adds a regularization term to maximize the log-likelihood of the pre-

training dataset. To avoid shortcutting and copying (because there are many common words in

feedback sequences), they randomly mask 0% - 5% of past tokens during training.

Chain of Hindsight Aligns Language Models with Feedback

https://arxiv.org/abs/2302.02676

The idea of CoH is to present a history of sequentially improved outputs in context and train the

model to take on the trend to produce better outputs. Algorithm Distillation applies the same idea

to cross-episode trajectories in reinforcement learning tasks, where an algorithm is encapsulated in

a long history-conditioned policy. The goal is to learn the process of RL instead of training a task-

specific policy itself.

Self-Reflection: Chain of Hindsight

Chain of Hindsight Aligns Language Models with Feedback

https://arxiv.org/abs/2210.14215
https://arxiv.org/abs/2302.02676

A single PaLM-E model directs the low-level policies of two real robots. Shown is a long-horizon mobile manipulation task
in a kitchen, and one-shot / zero-shot generalization with a tabletop manipulation robot.

Embodied AI: PaLM-E: An Embodied Multimodal Language Model

PaLM-E: An Embodied Multimodal Language Model

https://arxiv.org/abs/2303.03378

Embodied AI: Inner Monologue: Embodied Reasoning through Planning

with Language Models

Inner Monologue enables grounded closed-loop feedback for robot planning with large language models by

leveraging a collection of perception models in tandem with pretrained language-conditioned robot skills.

Inner Monologue: Embodied Reasoning through Planning with Language Models

https://arxiv.org/abs/2207.05608

Embodied AI: Inner Monologue: Embodied Reasoning through Planning

with Language Models

Various types of textual feedback. Success Detection gives task-specific task completion information,

Passive Scene Description gives structured semantic scene information at every planning step, and Active

Scene Description gives unstructured semantic information only when queried by the LLM planner.

Inner Monologue: Embodied Reasoning through Planning with Language Models

https://arxiv.org/abs/2207.05608

Embodied AI: Language Models as Zero-Shot Planners: Extracting

Actionable Knowledge for Embodied Agents

Authors investigate the possibility of extracting actionable knowledge from pre-trained large
language models (LLMs). They first show surprising finding that pre-trained causal LLMs can
decompose high-level tasks into sensible mid-level action plans (left). To make the plans executable,
They propose to translate each step into admissible action via another pre-trained masked LLM
(middle). The translated action is appended to the prompt used for generating the remaining steps
(right). All models are kept frozen without additional training.

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

https://arxiv.org/abs/2201.07207

Embodied AI: Language Models as Zero-Shot Planners: Extracting

Actionable Knowledge for Embodied Agents

The top row shows the execution of the task “Complete Amazon Turk Surveys”, and the bottom

row shows the task “Get Glass of Milk”.

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

https://arxiv.org/abs/2201.07207

