
Tutorial 1: Prompt Enginnering

Junying Chen | Sep. 13, 2024

Guidance for Assignment 1

CSC 6203 Large Language Models

Context

1. Prompt Enginnering

1. Assignment One of Our Course

1. Colab Practice

First of All, a Reminder
1. Please visit our course website more frequently. We will update the course materials and the latest
updates on our website.

Course website:https://llm-course.github.io

2. Join our WeChat Group: Please join our course WeChat group to stay updated and connect with classmates.
This will also help ensure that assignments are submitted on time :)

https://llm-course.github.io/

1. Prompt Enginnering

What is Prompt engineering

Prompt engineering are strategies and tactics for getting better results from large language models
(sometimes referred to as GPT models) like GPT-4o.

Explanation by OpenAI

More Specific Definitions

An AI prompt is a carefully crafted instruction given to an AI model to generate a specific output.
These outputs can range from text and images to videos or even music.

Prompt engineering means writing precise instructions that guide AI models like ChatGPT to
produce specific and useful responses. It involves designing inputs that an AI can easily understand
and act upon, ensuring the output is relevant and accurate.

Why it's important

Prompt engineering is essential for improving the performance of AI in various tasks, such as
answering customer inquiries, generating content, or analyzing data. Compare two ChatGPT
examples below:

If we refine our request, we get a response that aligns more with what we need.

Why it's important

Rather than a rigid technical skill, prompt engineering is more about mastering the art of
communicating with AI to achieve consistent, controllable, and repeatable results.

Although the term "engineering" suggests a highly technical process, it's actually all about using
strategic thinking and problem-solving to interact effectively with AI.

More Clearer Examples

Prompt for a text-to-image model
photography, person standing in front of the Eiffel
Tower at sunrise, wearing a red coat and holding a cup
of coffee --ar 3:2

If we change the first word, we get images that will emulate different styles.

The application of prompt engineer?

Prompt engineering can be applied to most large models that can accept text input. There have so many
common use cases.

Limitations of prompt engineering

When it comes to prompt engineering, there's both good news and bad news.

The good news is that AI has reached a point where it can understand natural language (NLP
technologies), allowing us to express our needs in plain, descriptive terms without needing to code.

The “bad” news, however, is that you still need to have a clear understanding of what you want,
describe it in detail, and communicate your request effectively.

Prompting Techniques

To get the most out of your prompts, you should understand different types of AI prompts.

Next, we will introduce some common prompting techniques.

1. Zero-Shot Prompting
Large language models (LLMs) today, such as GPT-3.5 Turbo, GPT-4, and Claude 3, are tuned to follow
instructions and are trained on so many data. Large-scale training makes these models capable of
performing some tasks in a "zero-shot" manner.

Zero-shot prompting means that the prompt used to interact with the model won't contain examples or
demonstrations. The zero-shot prompt directly instructs the model to perform a task without any
additional examples to steer it.

Note that in the prompt above we didn't provide the model with any examples of text alongside their classifications, the
LLM already understands "sentiment" -- that's the zero-shot capabilities at work.

2. Few-Shot Prompting
While large-language models demonstrate remarkable zero-shot capabilities, they still fall short on
more complex tasks when using the zero-shot setting.

Few-shot prompting can be used as a technique to enable in-context learning where we provide
demonstrations in the prompt to steer the model to better performance. The demonstrations serve as
conditioning for subsequent examples where we would like the model to generate a response.

We still get the correct answer, even though the labels have been randomized. Note that we also kept the format, which
helps too. In fact, with further experimentation, it seems the newer GPT models we are experimenting with are becoming
more robust to even random formats.

3. Chain-of-Thought Prompting
Chain-of-thought (CoT) prompting enables complex reasoning capabilities through intermediate
reasoning steps. You can combine it with few-shot prompting to get better results on more complex
tasks that require reasoning before responding.

3. Chain-of-Thought Prompting

Wow! We can see a perfect result when we provided the reasoning step.

4. Self-Consistency Prompting
Self-Consistency aims "to replace the naive greedy decoding used in chain-of-thought prompting". The idea is to
sample multiple, diverse reasoning paths through few-shot CoT, and use the generations to select the most
consistent answer. This helps to boost the performance of CoT prompting on tasks involving arithmetic and
commonsense reasoning.

Computing for the final answer involves a few steps but for the sake of simplicity, we can see that there is already a
majority answer emerging so that would essentially become the final answer.

5. Tree of Thoughts (ToT) Prompting
Tree of Thoughts (ToT) is a framework that generalizes over chain-of-thought prompting and encourages
exploration over thoughts that serve as intermediate steps for general problem solving with language models.

ToT maintains a tree of thoughts, where thoughts represent coherent language sequences that serve as intermediate
steps toward solving a problem. This approach enables an LM to self-evaluate the progress through intermediate
thoughts made towards solving a problem through a deliberate reasoning process.

The LM's ability to generate and evaluate thoughts is then combined with search algorithms (e.g., breadth-first search
and depth-first search) to enable systematic exploration of thoughts with lookahead and backtracking.

6. Retrieval Augmented Generation (RAG)
Retrieval Augmented Generation (RAG) takes an input and retrieves a set of relevant/supporting documents
given a source (e.g., Wikipedia). The documents are concatenated as context with the original input prompt and fed
to the text generator which produces the final output.

This makes RAG adaptive for situations where facts could evolve over time. This is very useful as LLMs's parametric
knowledge is static. RAG allows language models to bypass retraining, enabling access to the latest information for
generating reliable outputs via retrieval-based generation.

Meta AI researchers introduced Retrieval Augmented Generation (RAG) to address knowledge-intensive tasks.

7. Automatic Reasoning and Tool-use (ART)
Automatic Reasoning and Tool-use (ART) encourages the model to generalize from demonstrations to
decompose a new task and use tools in appropriate places, in a zero-shot fashion. In addition, ART is extensible as it
also enables humans to fix mistakes in the reasoning steps or add new tools by simply updating the task and tool
libraries. The process is demonstrated below:

Best practices in prompt engineering
To be a better prompt engineer, your may follow the best practices listed below:

1. Clarity and precision. Always be clear and precise in your instructions. Ambiguities can lead to varied
interpretations and outputs, which may not meet your needs.

2. Iterative refinement. Start with a basic prompt and refine it based on the responses you get. This process
helps in fine-tuning the AI's outputs to your specific requirements.

3. Use of keywords. Incorporate relevant keywords and specific details that can guide the AI more effectively
towards the desired output.

4. Understanding the model's limitations. Be aware of what the AI can and cannot do. This understanding will
help you craft prompts that are within the capabilities of the model, avoiding overly complex requests that lead
to poor responses.

5. Feedback loop. Utilize feedback to continuously improve the prompts. Feedback from users or the outputs
themselves can provide valuable insights into how prompts can be adjusted for better results.

6. Prompt length. Mind the length of your prompts. If the instructions are too lengthy they can confuse the AI. It
will also lead to higher token consumption and higher costs if you are deploying an AI-powered solution for
your users and customers.

7. Ethical considerations. Ensure that the prompts do not encourage the AI to generate harmful or biased
content. Being ethical in your prompt engineering is crucial for responsible AI use.

2. Assignment One of Our Course

Assignment 1

You will be asked to employ prompt engineering techniques to complete a task using LLMs. We
offer six optional tasks, or you can choose one that personally interests you. We encourage you to
pick a task that you find both challenging and enjoyable.

We will provide a detailed PDF file with assignment instructions:
https://llm-course.github.io/Assignments/Assignment1/Assignment_1_Prompt_Engineering.pdf

https://llm-course.github.io/Assignments/Assignment1/Assignment_1_Prompt_Engineering.pdf

Assignment 1 Deadline

● Deadline: 2024. 10. 18

Take it easy, but don't forget to submit on time.

3. Colab Practice

Practice of Prompt Engineering

If you're new to using LLMs, don't worry; we've prepared a Colab notebook for you:

https://colab.research.google.com/drive/1JFtkSnT_Sik8vIqvAXB8iXDKwMiQrHyf?usp=sharing

1. How to efficiently call the GPT-4 API.

2. Useful Prompt Engineering techniques.

3. How to get started with Task 1 and Task 2.

This will guide you on

https://colab.research.google.com/drive/1JFtkSnT_Sik8vIqvAXB8iXDKwMiQrHyf?usp=sharing

Thanks
That's all for today's class, and you are now free to leave!

