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To recap…



Background

• language model

Liu et al., Representation Learning for Natural Language Processing, Springer, 2020



What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+
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What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

A conditional language model assigns a probability of a word given 
some conditioning context

𝑔: (𝑉𝑛−1 , 𝑉) → 𝑅+
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What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

A conditional language model assigns a probability of a word given 
some conditioning context

𝑔: (𝑉𝑛−1 , 𝑉) → 𝑅+

And 𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) = 𝑔(𝑤1 ⋯𝑤𝑛−1, 𝑤) =
𝑓(𝑤1⋯𝑤𝑛)

𝑓(𝑤1⋯𝑤𝑛−1)

𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) is the foundation of modern large language models (GPT, ChatGPT, etc.)



Language model using neural networks

我 思 故 我

在

input：

output：

Back-box neural networks：
GPT-3/ChatGPT/GPT4 have 
175B+ parameters 
Humans have 100B+ 
neurons



Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

GPT-3 still acts in this way but the model is  implemented as a very large neural network of  175-

billion parameters!



Language models:Broad Sense

❖ Decoder-only models (GPT-x models)

❖ Encoder-only models (BERT, RoBERTa, ELECTRA)

❖ Encoder-decoder models (T5, BART)

The latter two usually involve a 

different pre-training

objective. 



Today’s lecture

• Language model in a narrow sense

(Probability theory, N-gram language model)

• Language model in broad sense

• More thoughts on language model



Why do we need language models?

Many NLP tasks require natural language output:
- Machine translation: return text in the target language

- Speech recognition: return a transcript of what was spoken

- Natural language generation: return natural language text

- Spell-checking: return corrected spelling of input

Language models define probability distributions  

over (natural language) strings or sentences.

➔We can use a language model to score possible  

output strings so that we can choose the best (i.e.  

most likely) one: if PLM(A) > PLM(B), return A, not B



Hmmm, but…

… what does it mean for a language model to “define  

a probability distribution”?

… why would we want to define probability  

distributions over languages?

… how can we construct a language model such that  

it actually defines a probability distribution?



Reminder:

Basic Probability  Theory



P( ) = 2/15

P(blue) = 5/15

P(blue | ) = 2/5

P(red)

P( ) = 1/15

= 5/15

P( ) = 5/15

P( or ) = 2/15

P( |red) = 3/5

Pick a random shape, then put it back in the bag.

Sampling with replacement



Pick a random shape, then put it back in the bag.  

What sequence of shapes will you draw?

P( )
= 1/15 × 1/15 × 1/15 ×2/15

= 2/50625

P( )
= 3/15 × 2/15 × 2/15 ×3/15

= 36/50625

P( ) = 2/15

P(blue) = 5/15

P(blue | ) = 2/5

P(red)

P( ) = 1/15

= 5/15

P( ) = 5/15

P( or ) = 2/15

P( |red) = 3/5

Sampling with replacement



P(of) = 3/66  

P(Alice) = 2/66  

P(was) = 2/66  

P(to) = 2/66

P(her) = 2/66  

P(sister) = 2/66  

P(,) = 4/66

P(') = 4/66

Sampling with replacement
Alice was beginning to get very tired of  

sitting by her sister on the bank, and of  

having nothing to do: once or twice she  

had peeped into the book her sister was  

reading, but it had no pictures or  

conversations in it, 'and what is the use  

of a book,' thought Alice 'without  

pictures or conversation?'



P(of) = 3/66  

P(Alice) = 2/66  

P(was) = 2/66  

P(to) = 2/66

P(her) = 2/66  

P(sister) = 2/66  

P(,) = 4/66

P(') = 4/66

In this model, P(English sentence) = P(word salad)

Sampling with replacement
beginning by, very Alice but was and?  

reading no tired of to into sitting  

sister the, bank, and thought of without  

her nothing: having conversations Alice  

once do or on she it get the book her had  

peeped was conversation it pictures or  

sister in, 'what is the use had twice of  

a book''pictures or' to



Probability theory: terminology

Trial (aka “experiment”)
Picking a shape, predicting a word

Sample space Ω:

The set of all possible outcomes

(all shapes; all words in Alice in Wonderland)

Event ω ⊆ Ω:

An actual outcome (a subset of Ω)  

(predicting ‘the’, picking a triangle)

Random variable X: Ω → T
A function from the sample space (often the identity function)  

Provides a ‘measurement of interest’ from a trial/experiment  

(Did we pick ‘Alice’/a noun/a word starting with “x”/…?)



3) And the probability of all disjoint events sums to 1.

What is a probability distribution?

P(ω) defines a distribution over Ω iff

1) Every event ω has a probability P(ω) between 0 and 1:

0 ≤ P ( ω ⊆ Ω) ≤ 1

2) The null event ∅ has probability P(⊘) = 0:

P (⊘)  = 0



‘Discrete’: a fixed (often finite) number of outcomes

Bernoulli distribution (two possible outcomes)  

Defined by the probability of success (= head/yes)

The probability of head is p. The probability of tail is 1−p.

Categorical distribution (N possible outcomes c1…cN)

The probability of category/outcome ci is pi (0 ≤ pi ≤ 1; ∑i pi = 1).
- e.g. the probability of getting a six when rolling a die once

-e.g. the probability of the next word (picked among a vocabulary of N words)  

(NB: Most of the distributions we will see in this class are categorical.

Some people call them multinomial distributions, but those refer to sequences
of trials, e.g. the probability of getting five sixes when rolling a die ten times)

Discrete probability distributions:  

single trials



The conditional probability of X given Y, P(X | Y ),  

is defined in terms of the probability of Y, P( Y ),  

and the joint probability of X and Y, P(X,Y ):

Joint and Conditional Probability

P (X |Y ) =
P (X, Y

)   P (Y

)

P(blue | ) = 2/5



The chain rule

The joint probability P(X,Y) can also be expressed in  

terms of the conditional probability P(X | Y)

P (X, Y ) = P (X|Y )P (Y )

This leads to the so-called chain rule



Independence

Two random variables X and Y are independent if

P (X, Y ) = P ( X ) P ( Y )

If X and Y are independent, then P(X | Y) = P(X):

P (X |Y ) =
P (X, Y

)  P ( Y

)P ( X ) P ( Y )  

P ( Y )
(X ,Y independent)=

= P (X )



Probability models

Building a probability model consists of two steps:

1. Defining the model
2. Estimating the model’s parameters  

(= training/learning )

Models (almost) always make  

independence assumptions.
That is, even though X and Y are not actually independent,  

our model may treat them as independent.

This reduces the number of model parameters that  

we need to estimate (e.g. from n2 to 2n)



Language modeling  with n-grams



A language model over a vocabulary V

assigns probabilities to strings drawn from V*.

Recall the chain rule:
P(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) | w(1)) ⋅ . . . ⋅ P(w(i) | w(i−1), . .
. , w(1))

An n-gram language model assumes each word  

depends only on the last n−1 words:

Pngram(w(1) . . . w(i)) = P(w(1)) ⋅ P(w(2) | w(1)) ⋅ . . . ⋅ P(w(i) | w(i−1), . . . ,
w(1−(n+1)))

Language modeling with N-grams



N-gram models

N-gram models assume each word (event)  

depends only on the previous n−1 words (events):
N

Unigram model: P(w(1) . . . w(N )) = ∏
P(w(i))

i=1  

NBigram model: P(w(1) . . .w(N )) = ∏ P(w(i) | w(i−1))
i=1  

N

i=1

Such independence assumptions are called  

Markov assumptions (of order n−1).

Trigram model: P(w(1) . . .w(N )) = ∏ P(w(i) | w(i−1),w(i−2))



P(of) = 3/66  

P(Alice) = 2/66  

P(was) = 2/66  

P(to) = 2/66

P(her) = 2/66  

P(sister) = 2/66  

P(,) = 4/66

P(') = 4/66

In this model, P(English sentence) = P(word salad)

A unigram model for Alice
beginning by, very Alice but was and?  

reading no tired of to into sitting  

sister the, bank, and thought of without  

her nothing: having conversations Alice  

once do or on she it get the book her had  

peeped was conversation it pictures or  

sister in, 'what is the use had twice of  

a book''pictures or' to



Alice was beginning to get very tired of  

sitting by her sister on the bank, and of  

having nothing to do: once or twice she  

had peeped into the book her sister was  

reading, but it had no pictures or  

conversations in it, 'and what is the use  

of a book,' thought Alice 'without  

pictures or conversation?'

P(w(i) = of | w(i–1) = tired) = 1  

P(w(i) = of | w(i–1) = use) = 1  

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3

P(w(i) = book | w(i–1) = the) = 1/3

P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice



English
Alice was beginning to get very  

tired of sitting by her sister on  

the bank, and of having nothing to  

do: once or twice she had peeped  

into the book her sister was  

reading, but it had no pictures or  

conversations in it, 'and what is  

the use of a book,' thought Alice  

'without pictures or conversation?'

Word Salad
beginning by, very Alice but was and?  

reading no tired of to into sitting  

sister the, bank, and thought of without  

her nothing: having conversations Alice  

once do or on she it get the book her had  

peeped was conversation it pictures or  

sister in, 'what is the use had twice of  

a book''pictures or' to

Now, P(English) ⪢ P(word salad)

Using a bigram model for

Alice

P(w(i) = of | w(i–1) = tired) = 1  

P(w(i) = of | w(i–1) = use) = 1  

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3

P(w(i) = book | w(i–1) = the) = 1/3

P(w(i) = use | w(i–1) = the) = 1/3



Where do we get the  probabilities

from?



Learning (estimating) a language model

Where do we get the parameters of our model  

(its actual probabilities) from?

P(w(i) = ‘the’ | w(i–1) = ‘on’) = ???

We need (a large amount of) text as training data  

to estimate the parameters of a language model.

The most basic parameter estimation technique:  

relative frequency estimation (= counts)

P(w(i) = ‘the’ | w(i–1) = ‘on’) = C(‘on the’) / C(‘on’)

Also called Maximum Likelihood Estimation (MLE)

NB: MLE assigns all probability mass to events  

that occur in the training corpus.



Are n-gram models  actual 

language  models?



How do n-gram models define P(L)?

is a distribution:

i=1...N

An n-gram model defines Pngram(w(1) . . . w(N)) in terms of the  

probability of predicting each word: Pbigram(w(1) . . .w(N )) = ∏ P(w(i) | w(i−1))

With a fixed vocabulary V, it’s easy to make sure P(w(i) |w(i−1))

i=1...|V|

∑ P(wi | wj) = 1and ∀i, j 0 ≤ P(wi | wj) ≤ 
1

If P(w(i) | w(i−1)) is a distribution, this model defines

one distribution (over all strings) for each length N

But the strings of a language L don’t all have the same length

English = {“yes!”, “I agree”, “I see you”, …}

And there is no Nmax that limits how long strings in L canget.

Solution: the EOS (end-of-sentence) token!



How do n-gram models define P(L)?

Think of a language model as a stochastic process:
-At each time step, randomly pick one more word.

-Stop generating more words when the word you pick is a special end-

of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our  

training data so that each sentence ends in EOS.

This means our vocabulary is now VEOS = V ∪{EOS}

We then get an actual language model,

i.e. a distribution over strings of any length
Technically, this is only true because P(EOS | …) will be high enough that we are always  

guaranteed to stop after having generated a finite number of words

Why do we care about having one model for all lengths?  

We can now compare the probabilities of strings of different  

lengths, because they’re computed by the same distribution.



A couple more  modifications…



Handling unknown words: UNK

Training:
-Assume a fixed vocabulary (e.g. all words that occur at least
n times in the training corpus)

-Replace all other words in the corpus by a token <UNK>

-Estimate the model on this modified training corpus.

Testing (e.g to compute probability of a string):
-Replace any words not in the vocabulary by <UNK>

Refinements:

use different UNK tokens for different types of words  

(numbers, etc.).



What about the beginning of the sentence?

In a trigram model
P(w(1)w(2)w(3)) = P(w(1))P(w(2) | w(1))P(w(3) | w(2), w(1))

only the third term P(w(3) | w(2), w(1)) is an actual 
trigram  probability. What about P(w(1)) and P(w(2) |

w(1)) ?

If this bothers you:

Add n–1 beginning-of-sentence (BOS) symbols to  

each sentence for an n–gram model:
BOS1 BOS2 Alice was …

Now the unigram and bigram

probabilities  involve only BOS symbols.



To recap…



1. Replace all rare words in training corpus with UNK

2. Bracket each sentence by special start and end symbols:

<s> Alice was beginning to get very tired… </s>

3. Vocabulary V’ = all tokens in modified training corpus

(all common words, UNK, <s>, </s>)

4. Count the frequency of each bigram….

C(<s> Alice) = 1, C(Alice was) = 1, …

5. .... and normalize these frequencies to get probabilities:

P(was | Alice) = ∑
C(Alice

was)
wi∈V′

C(Alice wi)

Estimating a bigram models with BOS  

(<s>), EOS (</s>) and UNK using MLE



Using language  models



How do we use language

models?
Independently of any application, we can use a  

language model as a random sentence generator  
(i.e we sample sentences according to their language model  

probability)

Systems for applications such as machine translation,  

speech recognition, spell-checking, generation, often  

produce multiple candidate sentences as output.
- We prefer output sentences SOut that have a higher probability

- We can use a language model P(SOut) to score and rank these  

different candidate output sentences, e.g. as follows:

argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut)



Using n-gram models  to 

generate language



Generating from a distribution

x1 x2 x3 x4 x5

0 p1 p1+p2 p1+p2+p3 p1+p2+p3+p4 1

How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X |Y=y)?

-Assume X has N possible outcomes (values): {x1, …, xN}

and P(X=xi | Y=y) = pi

- Divide the interval [0,1] into N smaller intervals accordingto  

the probabilities of the outcomes
-Generate a random number r between 0 and 1.

-Return the x1 whose interval the number is in.
r



Generating the Wall Street Journal



Generating Shakespeare



Shakespeare as corpus

The Shakespeare corpus consists of N=884,647 word

tokens and a vocabulary of V=29,066 word types

Shakespeare produced 300,000 bigram types  

out of V2= 844 million possible bigram types.

99.96% of possible bigrams don’t occur in the corpus.

Our relative frequency estimate assigns non-zero  

probability to only 0.04% of the possible bigrams  
That percentage is even lower for trigrams, 4-grams, etc.

4-grams look like Shakespeare because they are Shakespeare!



We estimated a model on 440K word tokens, but:

Only 30,000 word types occur in the training data  

Any word that does not occur in the training data  

has zero probability!

Only 0.04% of all possible bigrams (over 30K word  

types) occur in the training data

Any bigram that does not occur in the training data
has zero probability (even if we have seen both words in  

the bigram)

MLE doesn’t capture unseen events



How we assign non-zero  

probability to unseen events?

P(seen)

= 1.0
P(seen)

< 1.0

We have to “smooth” our distributions to assign some  

probability mass to unseen events
P(unseen)

> 0.0

???

MLE model Smoothed model

We won’t talk much about smoothing this year.



Smoothing methods

Add-one smoothing:

Hallucinate counts that didn’t occur in the data

Linear interpolation:

P̃ (w| w′, w′′) = λP̂(w | w′, w′′) + (1 − λ)P̃ (w| w′)
Interpolate n-gram model with (n–1)-gram model.

Absolute Discounting: Subtract constant count from  

frequent events and add it to rare events
Kneser-Ney: AD with modified unigram probabilities

Good-Turing: Use probability of rare events to  

estimate probability of unseen events



Add-One (Laplace) Smoothing

A really simple way to do smoothing:

Increment the actual observed count of every possible
event (e.g. bigram) by a hallucinated count of 1  

(or by a hallucinated count of some k with 0<k<1).

Shakespeare bigram model (roughly):
0.88 million actual bigram counts

+ 844.xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model  

come from actual data. We’re back to word salad.

K needs to be really small. But it turns out that that still doesn’t  

work very well.



Evaluation



Intrinsic vs Extrinsic Evaluation

How do we know whether one language model  

is better than another?

There are two ways to evaluate models:
- intrinsic evaluation captures how well the model captures  

what it is supposed to capture (e.g. probabilities)

-extrinsic (task-based) evaluation captures how useful the  

model is in a particular task.

Both cases require an evaluation metric that allows us

to measure and compare the performance of different

models.



Intrinsic Evaluation  of 

Language Models:  Perplexity



Perplexity

If a LM assigns probability P(w1, …, wN) to a test  

corpus w1…wN, the LM’s perplexity, PP(w1…wN),

is

A LM with lower perplexity is better because it assigns  

a higher probability to the unseen test corpus.
LM1 and LM2’s perplexity can only be compared if they use the same vocabulary

— Trigram models have lower perplexity than bigram models;

— Bigram models have lower perplexity than unigram models, etc.

The perplexity of a language models is defined as  

the inverse ( 1 ) of the probability of the test set,
P( . . . )

Nnormalized ( . . . ) by the # of tokens (N) in the test set.

PP(w1...wN ) == N

⇥
1

P(w1...wN)



Practical issues

with

PP(w1...wN ) =def

• Since language model probabilities are very small,  

multiplying them together often yields to underflow.

• It is often better to use logarithms instead, so replace

• s
N

N

’
i= 1

1

P(w |i i n+w 1,...,wi 1)

PP(w1...wN )

=def

1 N

i= 1

exp

✓

—
N Â log P w w( i| i—1,...,wi— n+ 1

◆



Extrinsic (Task-Based)  

Evaluation of LMs:  

Word Error Rate



Intrinsic vs. Extrinsic Evaluation

Perplexity tells us which LM assigns a higher  

probability to unseen text

This doesn’t necessarily tell us which LM is better for  

our task (i.e. is better at scoring candidate sentences)

Task-based evaluation:
- Train model A, plug it into your system for performing task T
- Evaluate performance of system A on task T.

- Train model B, plug it in, evaluate system B on same task T.

- Compare scores of system A and system B on task T.



Originally developed for speech recognition.

How much does the predicted sequence of words  

differ from the actual sequence of words in the correct  

transcript?

Insertions:

Deletions: “see a movie” → “see movie”

Substitutions: “drink ice tea” → “drink nice tea”

Word Error Rate (WER)

WER =
Insertions + Deletions + Substitutions

Actual words in transcript

“eat lunch” → “eat a lunch”



To recap….



Key concepts in summary

N-gram language models
Independence assumptions

Getting from n-grams to a distribution over a language

Relative frequency (maximum likelihood) estimation  

Smoothing

Intrinsic evaluation: Perplexity,  

Extrinsic evaluation: WER



Contents

• Language model in a narrow sense

(Probability theory, N-gram language model)

• Language model in broad sense

(BERT and beyond)

• More thoughts on language model



More on N-gram LMs



the students opened their 

•Question: How to learn a Language Model?

•Answer (pre- Deep Learning): learn an n-gram Language Model!

•Definition: An n-gram is a chunk of n consecutive words.

•unigrams: “the”, “students”, “opened”, ”their”

•bigrams: “the students”, “students opened”, “opened their”

•trigrams: “the students opened”, “students opened their”

•four-grams: “the students opened their”

•Idea: Collect statistics about how frequent different n-grams are and use 

these to  predict next word.

N-gram Language Models



N-gram Language Models

•First we make a Markov assumption: 𝑥
(&'!) 

depends only on the preceding 

n-1 words

•Question: How do we get these n-gram and (n-1)-gram probabilities?

•Answer: By counting them in some large corpus of text!

(statistical  approximation)



N-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their 

discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• 🡪 P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• 🡪 P(exams | students opened their) = 0.1

Should we have discarded  the 

“proctor” context?

67



Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.

Typically, we can’t have n bigger than 5.

Problem: What if “students  

opened their” never occurred in  

data? Then we can’t calculate  

probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students  

opened their 𝑤” never  

occurred in data? Then 𝑤 has  

probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 

𝛿 to the count for every 𝑤∈
𝑉.  This is called smoothing.

(Partial) Solution: Just condition  on 

“opened their” instead.

This is called backoff.

68



Storage Problems with n-gram Language Models

69

Storage: Need to store  

count for all n-grams 

you  saw in the corpus.

Increasing n or increasing  

corpus increases model size!



How to build a neural language model?

• Recall the Language Modeling task:

• Input: sequence of words

• Output: prob. dist. of the next word

• How about a window-based neural model?

• We saw this applied to Named Entity Recognition in Lecture 2:

LOCATION

in Paris are

amazi

ng

museums 70



A fixed-window neural Language Model

the

stude

nts

opene

d

thei

r

books

laptop

s

concatenated word embeddings

words / one-hot vectors

hidden layer

a zo

o

output distribution

71



A fixed-window neural Language Model

the

stude

nts

opene

d

thei

r

book

s laptop

s

a zo

o

Improvements over n-gram LM:

• No sparsity problem

• Don’t need to store all observed n-grams

Remaining problems:

• Fixed window is too small

• Enlarging window enlarges 𝑊
• Window can never be large enough!

• 𝑥(!) and 𝑥(") are multiplied by  completely 

different weights in 𝑊. No symmetry in how 

the inputs are  processed.

We need a neural architecture  that can 

process any length input

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model



From N-gram LMs to Word vectors
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Word embedding/Vectors !



How do we represent the meaning of a word?

Definition: meaning (Webster dictionary) 

❏ the idea that is represented by a word, phrase, etc. 

❏ the idea that a person wants to express by using words, signs, etc. 

❏ the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning: 

❏ signifier (symbol) ⟺ signified (idea or thing) 

= denotational semantics 

❏ Tree ⟺ {🌳, 🌲, 🌴, …}

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf



Representing words as discrete symbols

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

❏ In traditional NLP, we regard words as discrete symbols: 

hotel, conference, motel – a localist representation 

❏ Such symbols for words can be represented by one-hot vectors: 

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] 

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] 

❏ Vector dimension = number of words in vocabulary (e.g., 500,000+)

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!



Representing words by their context

Distributional semantics: A word’s meaning is given by the words that frequently 

appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11) 

•  One of the most successful ideas of modern statistical NLP! 

• When a word w appears in a text, its context is the set of words that appear nearby 

(within a fixed-size window). 

• We use the many contexts of w to build up a representation of w

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf



Word2Vec Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

Idea:

• We have a large corpus (“body”) of text: a long list of words

• Every word in a fixed vocabulary is represented by a vector

• Go through each position t in the text, which has a center word c and context

(“outside”) words o

• Use the similarity of the word vectors for c and o to calculate the probability of o given c 

(or vice versa)

• Keep adjusting the word vectors to maximize this probability

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf



Word2vec: objective function

❏ We want to minimize the objective function:

❏ Question: How to calculate

Answer: We will use two vectors per word w:

❏ when w is a center word

❏ when w is a context word

Then for a center word c and a context word o: (softmax)

“max” because amplifies probability of largest

“soft” because still assigns some probability to smaller 

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf



Word structure and subword models

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



Word structure and subword models

Subword modeling in NLP encompasses a wide range of methods for reasoning about structure 

below the word level. (Parts of words, characters, bytes.) 

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens). 

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary. 

1. Start with a vocabulary containing only characters and an “end-of-word” symbol. 

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword. 

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

❏ Common words end up being a part of 

the subword vocabulary, while rarer 

words are split into (sometimes intuitive, 

sometimes not) components. 

❏ In the worst case, words are split into as 

many subwords as they have characters.



From static word vector to

contextualized word vectors 



What’s wrong with word2vec?

• One vector for each word type

• Complex characteristics of word use: semantics, syntactic  
behavior, and connotations

• Polysemous words, e.g., bank, mouse



Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

movie was terribly exciting !the

Contextualized word embeddings

f : (w1, w2, …, wn) ⟶ x1, …, xn ∈ ℝd



Contextualized word embeddings

(Peters et al, 2018): Deep contextualized word representations



ELMo

•

•

NAACL’18: Deep contextualized word representations  

Key idea:

• Train an LSTM-based language model on some  
large corpus

• Use the hidden states of the LSTM for each token  
to compute a vector representation of each word



ELMo

input
softmax

# words in the  
sentence



How to use ELMo?

• γtask: allows the task model to scale the entire ELMo vector

• stask: softmax-normalized weights across layersj

hlM = xLM, hLM = [ h LM; h
LM]

k,0 k k,j k,j k,j

• Plug ELMo into any (neural) NLP model: freeze all the LMs  
weights and change the input representation to:

(could also insert into higher layers)

# of layers



Use ELMo in practice

https://allennlp.org/elmo

Also available in TensorFlow



BERT

•
•

First released in Oct 2018.

NAACL’19: BERT: Pre-training of Deep Bidirectional  
Transformers for Language Understanding

How is BERT different from ELMo?

#1. Unidirectional context vs bidirectional context  

#2. LSTMs vs Transformers (will talk later)

#3. The weights are not freezed, called fine-tuning



Bidirectional encoders

•

•

Language models only use left context or right context (although  
ELMo used two independent LMs from each direction).

Language understanding is bidirectional

Lecture 9:

Why are LMs unidirectional?



Bidirectional encoders

•

•

Language models only use left context or right context (although  
ELMo used two independent LMs from each direction).

Language understanding is bidirectional



Masked language models (MLMs)

• Solution: Mask out 15% of the input words, and then predict the  
masked words

•
•

Too little masking: too expensive to train  

Too much masking: not enough context



Masked language models (MLMs)

A little more complication:

Because [MASK] is never seen when BERT is
used…



Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is  
followed after the first one.

Recent papers show that NSP is not necessary…

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans  
(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach



Pre-training and fine-tuning

Pre-training Fine-tuning

Key idea: all the weights are fine-tuned on downstream tasks



Applications



More details

• Input representations

• Use word pieces instead of words: playing => play
##ing

Assignment 4

• Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)

• Released two model sizes: BERT_base, BERT_large



Variants of

contextualized word vectors 



Where we were: pretrained word embeddings

Some issues to think about: 

• The training data we have for our 

downstream task (like question 

answering) must be sufficient to teach 

all contextual aspects of language. 

• Most of the parameters in our network 

are randomly initialized!

Where we’re going: pretraining whole models

In modern NLP: 

• All (or almost all) parameters in NLP networks 

are initialized via pretraining. 

• Pretraining methods hide parts of the input from 

the model, and train the model to reconstruct those 

parts. 

Stronger: 
• representations of language 

• parameter initializations for 

strong NLP models.

• Probability distributions 

over language that we can 

sample from

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



What can we learn from reconstructing the input?

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ 

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Overall, the value I got from the two hours watching it was the sum total of the 

popcorn and the drink. The movie was ___.

The woman walked across the street, checking for traffic over ___ shoulder.

I went to the ocean to see the fish, turtles, seals, and _____. 



Pretraining through language modeling [Dai and Le, 2015]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Recall the language modeling task: 

• Model                         , the probability distribution over words given their past contexts. 

• There’s lots of data for this! (In English.) 

Pretraining through language modeling: 

• Train a neural network to perform language modeling on a large amount of text. 

• Save the network parameters. 

https://arxiv.org/pdf/1511.01432.pdf


Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

• Gets bidirectional context – can condition on future!

• How do we train them to build strong representations?

• Good parts of decoders and encoders? 

• What’s the best way to pretrain them?

• Language models! What we’ve seen so far. 

• Nice to generate from; can’t condition on future words 



Pretraining encoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

So far, we’ve looked at language model pretraining. But encoders get bidirectional context, 

so we can’t do language modeling!

Idea: replace some fraction of words in the 

input with a special [MASK] token; predict 

these words.

Only add loss terms from words that are “masked 

out.” If     is the masked version of 𝑥, we’re 

learning               . Called Masked LM. [Devlin et al., 

2018]

https://arxiv.org/pdf/1810.04805.pdf


BERT: Bidirectional Encoder Representations from Transformers

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a 

pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT: 

• Predict a random 15% of (sub)word tokens. 

• Replace input word with [MASK] 80% 

of the time 

• Replace input word with a random token 

10% of the time 

• Leave input word unchanged 10% of the 

time (but still predict it!) 

• Why? Doesn’t let the model get complacent 

and not build strong representations of non-

masked words. (No masks are seen at fine-

tuning time!)

[Devlin et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf


Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

• Gets bidirectional context – can condition on future! 

• How do we train them to build strong representations?

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

• Language models! What we’ve seen so far. 

• Nice to generate from; can’t condition on future words 



Pretraining encoder-decoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

For encoder-decoders, we could do something like language modeling, but where a prefix 

of every input is provided to the encoder and is not predicted.

The encoder portion benefits from bidirectional context; 

The decoder portion is used to train the whole model through 

language modeling.

[Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf


Pretraining encoder-decoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

[Raffel et al., 2018]

Replace different-length spans from the input with 

unique placeholders; decode out the spans that were 

removed!

This is implemented in text preprocessing: it’s 

still an objective that looks like language 

modeling at the decoder side.

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf


Pretraining encoder-decoders: what pretraining objective to use?

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf
[Raffel et al., 2018]

A fascinating property of T5: it 

can be finetuned to answer a 

wide range of questions, 

retrieving knowledge from its 

parameters.

NQ: Natural Questions 

WQ: WebQuestions 

TQA: Trivia QA 

All “open-domain” versions 

https://arxiv.org/pdf/1910.10683.pdf


Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

• Gets bidirectional context – can condition on future! 

• How do we train them to build strong representations?

• Good parts of decoders and encoders? 

• What’s the best way to pretrain them?

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words



Overview

Benyou Wang et.al. Pre-trained Language Models in Biomedical Domain: A Systematic Survey. ACM Computing Survey.



Back to the language model

(next word predict)



Pretraining decoders

When using language model pretrained decoders, we can ignore that they were trained 

to model 

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

We can finetune them by training a 

classifier on the last word’s hidden state.

Where 𝐴 and 𝑏 are randomly initialized and 

specified by the downstream task.

Gradients backpropagate through the whole 

network. 
[Note how the linear layer hasn’t been 

pretrained and must be learned from scratch.] 



Pretraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

This is helpful in tasks where the output 

is a sequence with a vocabulary like that 

at pretraining time! 

• Dialogue (context=dialogue history)

• Summarization (context=document)

[Note how the linear layer has been pretrained.] Where 𝐴, 𝑏 were pretrained in the 

language model!



Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language 

models. GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to 

produce relatively convincing samples of natural language.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways: 

• Sample from the distributions they define (maybe providing a prompt) 

• Fine-tune them on a task we care about, and take their predictions.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Very large language models seem to perform some kind of learning without 

gradient steps simply from examples you provide within their contexts. 

GPT-3 is the canonical example of this. The largest T5 model had 11 

billion parameters. GPT-3 has 175 billion parameters. 



Today’s lecture

• Language model in a narrow sense

(Probability theory, N-gram language model)

• Language model in broad sense

• More thoughts on language model



• LM (next word predict) is scalable

• LM does not need annotations 

• LM is simple such that it is easily to adapt it many tasks

• LM could model human thoughts

• LM is efficient to capture knowledge (imagine use images to record 
knowledge?)

• Humans do LM everyday (do next-word/ next-second prediction)



Five-minute Tutorial 

https://platform.openai.com/docs/libraries/python-library



https://platform.openai.com/docs/libraries/python-library



Related resource:
❖ https://www.promptingguide.ai/zh
❖ https://www.youtube.com/watch?v=dOxUroR57xs&ab_channel=ElvisSaravia
❖ https://github.com/dair-ai/Prompt-Engineering-Guide

Prompt Engineering

https://www.promptingguide.ai/zh
https://www.youtube.com/watch?v=dOxUroR57xs&ab_channel=ElvisSaravia


Take some time!

• Use ChatGPT API by yourself.



Assignment 1: Using ChatGPT API

This will be released in the next week! 

See updates in our BB system, WeChat and Emails.
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