CSC6203/CIEB021: el UnertyofHong ko, Shendhe
arge Language Model

_ecture 2: language model and beyond

Winter 2023
Benyou Wang
School of Data Science

Torecap...

Background

. language model

N-gram Model

Predicts the next item in
a sequence based on
its previous n-1 items.

Learns a distributed representation
of words for language modeling.

Neural Probabilistic
Language Model

Pre-trained Language Model

Contextual word representation,
the new pre-training-fine-tuning
pipeline, larger corpora and
deeper neural architectures.

1954 1986 2013
£ Fa' 5 e o £ >
L o St S b b
1948 Distributional Hypothesis 2003 2018
A word is characterized by the Distributed Representation Word2

company it keeps.

Bag-of-words

Represents a sentence or a
document as the bag of its words.

Represents items by a pattern of
activation distributed over elements.

A simple and efficient distributed
word representation used in many
NLP models.

Liu et al., Representation Learning for Natural Language Processing, Springer, 2020

What is language modeling?

A language model assigns a probability to a N-gram
f:V* > R*

What Is language modeling?

A language model assigns a probability to a N-gram
f:V* > R*

STkiIkljf fskjhfkjsh kjfs fs kjhkjhs fsjhfkshkjfh Low probability

J ChatGPT is all you need high probability

What is language modeling?

A language model assigns a probability to a N-gram
f:V* > R*

A conditional language model assigns a probability of a word given

some conditioning context
g: (V1 1) >Rt
And p(wylwy - =

f(wqwy)
f(Wywp_1)

been got | never

I've|

What Is language modeling?

A language model assigns a probability to a N-gram
f:V* > R*

A conditional language model assigns a probability of a word given

some conditioning context
g: (V1 vy >Rt
And p(wnlwl '"Wn—l) — g(Wl ."Wn—lJW) — f(wq-wy)

f(Wywp_1)

p(w,|w; ---w, _,) is the foundation of modern large language models (GPT, ChatGPT, etc.)

Language model using neural networks

-

-

GPT-3/ChatGPT/GPT4 have
175B+ parameters

Humans have 100B+
neurons

[output: @

A

]

@ck-box neural networks::

--({
=

\" .—,

//r——‘i}“\ﬁ?\\
J__\
—

—JCJCcac

|

i

—

=
=
]

L

“\\\

%

H

]

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
xP(on|the cat sat) * P(the|the cat sat on)
xP(mat|the cat sat on the)

i

Implicit order

GPT-3 still acts in this way but the model is implemented as a very large neural network of 175-
billion parameters!

Language models:Broad Sense

Decoder-only models (GPT-x models)

< Encoder-only models (BERT, RoBERTa, ELECTRA)
« Encoder-decoder models (T5, BART)

ﬁsp
-

Mask LM Mask LM

& s 3

\

The latter two usually involve a
different pre-training
objective.

["translate English to German: That is good."

(e () ()

"cola sentence: The
course is jumping well."

BERT

E[CLS]

on the grass. sentence2: A rhino

E E E = = is grazing in a field."

I N [SEP] e M

{"stsb sentencel: The rhino grazed

— - <
[Tok N 1[[SEP)]](Tok 1] [TokM] dispatched emergency crews tuesday to
[survey the damage after an onslaught

-

"summarize: state authorities

of severe weather in mississippi.."

Masked Sentence A Masked Sentence B

. 2
Unlabeled Sentence A and B Pair

"Das ist gut."]

"not acceptable"]

"six people hospitalized after
a storm in attala county."

Today’s lecture

« Language model in a narrow sense
(Probabillity theory, N-gram language model)

« Language model in broad sense

« More thoughts on language model

Why do we need language models?

Many NLP tasks require natural language output:
- Machine translation: return text in the target language
- Speech recognition: return a transcript of what was spoken
- Natural language generation: return natural language text

- Spell-checking: return corrected spelling of input

Language models define probability distributions
over (natural language) strings or sentences.

-> \We can use a language model to score possible
output strings so that we can choose the best (i.e.
most likely) one: if PLm(A) > Prm(B), return A, not B

Hmmm, but...

... what does it mean for a language model to “define
a probability distribution™?

... why would we want to define probability
distributions over languages?

... how can we construct a language model such that
it actually defines a probability distribution?

Reminder:
Basic Probabllity Theory

Sampling with replacement

Pick a random shape, then put it back in the bag.

PE@ =215 P =115 P@ord) = 2/15
P(blue) = 5/15 P(red) =5/15 P(/\|red) = 3/5
P(blue |[) =2/5 PO =5/15

Sampling with replacement

Pick a random shape, then put it back in the bag.
What sequence of shapes will you draw?

= I/ISQQX 1/15 x 2115

= 2/50625

PAQO@®A)

=3/15 % 2/15 x 2/15 x 315

= 36/50625
PE@ =215 P@) =115 P@ord) = 2/15
P(blue) = 5/15 P(red) =5/15 P(/\|red) = 3/5

P(blue |J) = 2/5 PC)) =5/15

Sampling with replacement

was beginning to get very tired of

sitting by her on the bank, of
having nothing to do: once or twice she
had peeped into the book her was
reading, but it had no pictures or
conversations in it, ' what is the use
of a book,' thought 'without
pictures or conversation?'

P(o£f)=13/66 P(her)=2/66

P() =2/66 P() =2/66

P(was)=2/66 P(,)=4/66

P(to) = 2/66 P(") = 4/66

Sampling with replacement

beginning by, very but was ?
reading no tired of to into sitting
the, bank, thought of without

her nothing: having conversations

once do or on she it get the book her had

peeped was conversation it pictures or
in, 'what is the use had twice of

a book' 'pictures or' to

P(o£) = 3/66 P(her)=2/66

P() = 2/66 P() =2/66
P(was) = 2/66 P(,)=4/66

P(to) = 2/66 P(")=4/66

In this model, P(English sentence) = P(word salad) |

Probabillity theory: terminology

Trial (aka “experiment”)
Picking a shape, predicting a word
Sample space Q:
The set of all possible outcomes
(all shapes; all words in Alice in Wonderland)
Event o € Q:
An actual outcome (a subset of Q)
(predicting ‘the’, picking a triangle)
Random variable X: Q —» T

A function from the sample space (often the identity function)
Provides a ‘measurement of interest’ from a trial/experiment
(Did we pick ‘Alice’/a noun/a word starting with “x™/...?)

What is a probabillity distribution?

P(w) defines a distribution over Q iff

1) Every event o has a probability P(w) between 0 and 1.
0< P(wmEQ)<1

2) The null event @ has probability P(©®) =0:
P(QD) =0

3) And the probability of all disjoint events sums to 1.

Y Plw)=1ifVj#itwNw =0
wi 82 and | J, w; =0

Discrete probability distributions:
single trials

‘Discrete’: a fixed (often finite) number of outcomes

Bernoulli distribution (two possible outcomes)
Defined by the probability of success (= head/yes)

The probability of head is p. The probability of tail is 1—p.

Categorical distribution (N possible outcomes c1...cn)
The probability of category/outcome ciis pi (0 <pi<1; Yipi=1).
- e.g. the probability of getting a six when rolling a die once

-e.g. the probability of the next word (picked among a vocabulary of N words)

(NB: Most of the distributions we will see in this class are categorical.
Some people call them multinomial distributions, but those refer to sequences
of trials, e.g. the probability of getting five sixes when rolling a die ten times)

Joint and Conditional Probabillity

The conditional probability of X given'Y, P(X|Y),
Is defined in terms of the probability of Y,P(Y),
and the joint probability of X and Y, P(X,Y):

P(X, Y
PXN) = S

)
P(blue |) = 2/5

The chain rule

The joint probability P(X,Y) can also be expressed in
terms of the conditional probability P(X|Y)

P(X, Y) = P(X|Y)P(Y)

This leads to the so-called chain rule

P(X,X5,...,X,) = P(X,)P(Xo|X1)P(X3|Xo, X1).... P(X, | X1, ... X} 1)

P(Xy) [P(Xi| Xy ... Xio0)
=2

Independence

Two random variables X and Y are independent if

P(X, Y)= P(X)P(Y)

If X and Y are independent, then P(X|Y) = P(X):
P(X, Y
PN) = S5
= PIX)P(Y) (X,Y independ
P (Y) , pendent)

P(X)

Probability models

Building a probability model consists of two steps:

1. Defining the model
2. Estimating the model’s parameters

(= training/learning)

Models (almost) always make

iIndependence assumptions.

That is, even though X and Y are not actually independent,
our model may treat them as independent.

This reduces the number of model parameters that
we need to estimate (e.g. from n2to 2n)

Language modeling with n-grams

Language modeling with N-grams

A language model over a vocabulary V
assigns probabilities to strings drawn from V*.

Recall the chain rule:

P w@) = pw(D) « pw@ | w) - ...« P(w@ | w1 .

., wih)

An n-gram language model assumes each word
depends only on the last n—-1 words:

Pngmm(w(]) o@Dy = P - W@ WDy - PO | D
T =l + 1))y

N-gram models

N-gram models assume each word (event)
depends only on the previous n—1 words (events):

Unigram model: P(w(1) . .. wV)) = M
p(W(i))
i=1
Bigram model: P(w() ., .wiN)) = W P(W(i)|W(i—1))
i=1
N
Trigram model: P(w(.. .wN)) = M P(w® | wli=D, wii—2)
i=1

Such independence assumptions are called
Markov assumptions (of order n—1).

A unigram model for Alice

beginning by, very but was ?
reading no tired of to into sitting
the, bank, thought of without

her nothing: having conversations

once do or on she it get the book her had

peeped was conversation it pictures or
in, 'what is the use had twice of

a book' 'pictures or' to

P(of) =3/66 P(her)=12/66

P() =2/66 P() =2/66
P(was) =2/66 P(,)=4/66
P(to)=2/66 P(")=4/66

In this model, P(English sentence) = P(word salad) |

A bigram model for Alice

was beginning to get very tired of

sitting by her on the bank, of
having nothing to do: once or twice she
had peeped into the book her was
reading, but it had no pictures or
conversations in it, what is the use
of a book,' thought 'without
pictures or conversation?'
Pwi=0of |wiD=tired)=1 P(w(= bank | wi-1)= the) = 1/3
PWwi=of |wWi-l=use) =1 P(w(® = book | wi-1)= the) = 1/3
P(w = |Wi-)= her) = 1 P(w() = use | Wi-1) = the) = 1/3

P(w() = beginning | wi-1) = was) = 1/2
P(w() = reading | w(i-1) = was) = 1/2

Using a bigram model for

Alice
English Word Salad

beginning by, very but was ?

was beginning to get very reading no tired of to into sitting
tired of sitting by her on the, bank, thought of without
the bank, of having nothing to her nothing: having conversations
do: once or twice she had peeped once do or on she it get the book her had
into the book her was peeped was conversation it pictures or
reading, but it had no pictures or in, 'what is the use had twice of
conversations in it, ' what is a book' 'pictures or' to

the use of a book,' thought
'without pictures or conversation?'

Now, P(English) > P(word salad) I

Pwh)=of |wil=tired)=1 P(w() = bank | w(i-1) = the) = 1/3
Pwi)=of |wil)=use) =1 P(w(® = book | wi-1)= the) = 1/3
P(w() = | WD) = her) = 1 P(W0 = use | wi-) = the) = 1/3
P(w() = beginning | w(i-1) = was) = 1/2

P(w() = reading | w(i-1) = was) = 1/2

Where do we get the probabillities
from?

Learning (estimating) a language model

Where do we get the parameters of our model
(its actual probabilities) from?

Pw® = ‘the’ | wi-D) = ‘on’) = 22?2
We need (a large amount of) text as training data
to estimate the parameters of a language model.

The most basic parameter estimation technique:
relative frequency estimation (= counts)

Pw® = ‘the’ | wi-O) = ‘on’) = C(‘on the’)/ C(‘on’)
Also called Maximum Likelihood Estimation (MLE)

NB: MLE assigns all probability mass to events
that occur in the training corpus.

Are n-gram models actual
language models?

How do n-gram models define P(L)?

An n-gram model defines Ppgm(W . .. wiV) in terms of the

probability of predicting each word: Pygram("...w") = = Pw® wli-1)
i=1..N

With a fixed vocabulary V, it's easy to make sure P(w® |wi—1)
Is a distribution: ?_ P(w;| w) = Tand V;;0<P(w;| w) <
=147

If P(Ww®|wi-D) is a distribution, this model defines
one distribution (over all strings) for each length N

But the strings of a language L don't all have the same length

English = {"yes!”, “l agree”, | see you’, ...}
And there is no Nmax that limits how long strings in L canget.

Solution: the EOS (end-of-sentence) token!

How do n-gram models define P(L)?

Think of a language model as a stochastic process:
- At each time step, randomly pick one more word.

- Stop generating more words when the word you pick is a special end-
of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our

training data so that each sentence ends in EOS.
This means our vocabulary is now VEOS =V U{EOS}

We then get an actual language model,

l.e. a distribution over strings of any length

Technically, this is only true because P(EOS | ...) will be high enough that we are always
guaranteed to stop after having generated a finite number of words

Why do we care about having one model for all lengths?
We can now compare the probabilities of strings of different
lengths, because they’re computed by the same distribution.

A couple more modifications...

Handling unknown words: UNK

Training:
- Assume a fixed vocabulary (e.g. all words that occur at least
n times in the training corpus)

- Replace all other words in the corpus by a token <UNK>
- Estimate the model on this modified training corpus.

Testing (e.g to compute probability of a string):
- Replace any words not in the vocabulary by <UNK>

Refinements:
use different UNK tokens for different types of words
(numbers, etc.).

What about the beginning of the sentence?

In a trigram model
Pw@u®) = PP | wD)PWB | w@, w))
only the third term P(w® | w@ wM)Is an actual

trigram probability. What about P(w() and P(w'? |
w(1)) 2

If this bothers you:
Add n—1 beginning-of-sentence (BOS) symbols to

each sentence for an n—gram model:
BOS1 BOS; Alice was ..

Now the unigram and bigram
probabilities involve only BOS symbols.

Torecap...

Estimating a bigram models with BOS
(<s>), EOS (</s>) and UNK using MLE

1. Replace all rare words in training corpus with UNK
2. Bracket each sentence by special start and end symbols:

<s> Alice was beginning to get very tired.. </s>

3. Vocabulary V' = all tokens in modified training corpus
(all common words, UNK, <s>, </s>)
4. Count the frequency of each bigram....
C(<s> Alice) =1, C(Alice was) =1, ...
5. and normalize these frequencies to get probabilities:

N C(Alice
Pﬂgs s | Aliee) = 2, C(Alice W)

Wi EV,

Using language models

How do we use language
models?

Independently of any application, we can use a

language model as a random sentence generator
(i.e we sample sentences according to their language model
probability)

Systems for applications such as machine translation,
speech recognition, spell-checking, generation, often

produce multiple candidate sentences as output.
- We prefer output sentences Sou that have a higher probability

- We can use a language model P(Sout) to score and rank these
different candidate output sentences, e.g. as follows:
argmaxsout P(Sout | Input) = argmaxsout P(Input | Sout)P(Sout)

Using n-gram models to
generate language

Generating from a distribution

How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X |Y=y)?

-Assume X has N possible outcomes (values): {xi, ..., Xn}
and P(X=xi| Y=y) =pi

- Divide the interval [0,1] into N smaller intervals accordingto
the probabilities of the outcomes

-Generate a random number r between 0 and 1.
- Return the x1 whose interval the number is In.

0 p1 P1+P2 P1+P2+Ps3 pitp2tpstps 1

Generating the Wall Street Journal

unigram.: Months the my and 1ssue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

Generating Shakespeare

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

¢ Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he 1s trim, captain.

eWhy dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, 'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.

Shakespeare as corpus

The Shakespeare corpus consists of N=884,647 word
tokens and a vocabulary of V=29,066 word types

Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigram types.

99.96% of possible bigrams don'’t occur in the corpus.

Our relative frequency estimate assigns non-zero

probability to only 0.04% of the possible bigrams
That percentage is even lower for trigrams, 4-grams, etc.

4-grams look like Shakespeare because they are Shakespeare!

MLE doesn’t capture unseen events

We estimated a model on 440K word tokens, but:

Only 30,000 word types occur in the training data
Any word that does not occur in the training data
has zero probability!

Only 0.04% of all possible bigrams (over 30K word
types) occur in the training data

Any bigram that does not occur in the training data

has zero probability (even if we have seen both words in
the bigram)

How we assign non-zero
probability to unseen events?

We have to “smooth” our distributions to assign some

probability mass to unseen events
= P(unseen)

; > 0.0
[>/\
P(seen) ;\

10 P(seen)
B <1.0
MLE model Smoothed model

We won't talk much about smoothing this year.

Smoothing methods

Add-one smoothing:
Hallucinate counts that didn’t occur in the data

Linear interpolation: .
P W w, W) =APw]| W, W)+ (0 — AP Ww| w')
Interpolate n-gram model with (n—1)-gram model.

Absolute Discounting: Subtract constant count from

frequent events and add it to rare events
Kneser-Ney: AD with modified unigram probabilities

Good-Turing: Use probability of rare events to
estimate probability of unseen events

Add-One (Laplace) Smoothing

A really simple way to do smoothing:

Increment the actual observed count of every possible
event (e.g. bigram) by a hallucinated count of 1

(or by a hallucinated count of some k with 0<k<1).

Shakespeare bigram model (roughly):
0.88 million actual bigram counts
+ 844 .xx million hallucinated bigram counts

Oops. Now almost none of the counts in our model
come from actual data. We're back to word salad.

K needs to be really small. But it turns out that that still doesn’t
work very well.

Evaluation

Intrinsic vs Extrinsic Evaluation

How do we know whether one language model
IS better than another?

There are two ways to evaluate models:

-intrinsic evaluation captures how well the model captures
what it Is supposed to capture (e.g. probabilities)

-extrinsic (task-based) evaluation captures how useful the
model is in a particular task.

Both cases require an evaluation metric that allows us
to measure and compare the performance of different
models.

Intrinsic Evaluation of
Language Models: Perplexity

Perplexity

The perplexity of a language models is defined as

the inverse (5=) of the probability of the test set,

normalized () by the # of tokens (N) In the testset.

If a LM assigns probability P(wi, ..., wn) to a test
corpus wi...wn, the LM’s perplexity, PP(w1...wN),

IS 1
PP(wq...wn) = N

P(Wl. .« . WN)

A LM with lower perplexity is better because it assigns

a higher probability to the unseen test corpus.

LM: and LM2’s perplexity can only be compared if they use the same vocabulary
— Trigram models have lower perplexity than bigram models;
— Bigram models have lower perplexity than unigram models, etc.

Practical iIssues

. Since language model probabilities are very small,
multiplying them together often yields to underflow.

. It is often better to#se—legaﬁ%hms—msfeead sSo replace

PP(W1. . . WN) =def
Wie - INDZAe B ..., wi o)

with

VAR ¢
PP(w1. . . wy) exp — N‘A 0gP (WilWea, ...y Wiy g
=def =1

Extrinsic (Task-Based)
Evaluation of LMSs:

Word Error Rate

Intrinsic vs. Extrinsic Evaluation

Perplexity tells us which LM assigns a higher
probability to unseen text

This doesn’t necessarily tell us which LM is better for
our task (i.e. is better at scoring candidate sentences)

Task-based evaluation:
- Train model A, plug it into your system for performing task T

- Evaluate performance of system A on task T.
- Train model B, plug it in, evaluate system B on same task T.

- Compare scores of system A and system B on task T.

Word Error Rate (WER)

Originally developed for speech recognition.

How much does the predicted seguence of words
differ from the actual sequence of words in the correct
transcript?

1 + . + . .
WER = Insertions + Deletions + Substitutions

Actual words in transcript

Insertions: “eat lunch” — “eat a lunch”

Deletions: “see a movie”’ — “see movie”
Substitutions: “drink ice tea” — “drink nice tea”

Torecap....

Key concepts in summary

N-gram language models
Independence assumptions
Getting from n-grams to a distribution over a language
Relative frequency (maximum likelihood) estimation
Smoothing
Intrinsic evaluation: Perplexity,
Extrinsic evaluation: WER

Contents

« Language model in a narrow sense
(Probabillity theory, N-gram language model)

« Language model in broad sense
(BERT and beyond)

« More thoughts on language model

More on N-gram LMs

N-gram Language Models

the students opened their
*Question: How to learn a Language Model?

*Answer (pre- Deep Learning): learn an n-gram Language Model!

*Definition: An 7-gram 1s a chunk of n consecutive words.

29 ¢¢ 29 ¢¢

eunigrams: “the”, “students”, “opened”, “’their”
*bigrams: “the students”, “students opened”, “opened their”
trigrams: “the students opened”, “students opened their”

*four-grams: “the students opened their”

*Idea: Collect statistics about how frequent different n-grams are and use
these to predict next word.

N-gram Language Models

"
*First we make a Markov assumption: x(&) depends only on the preceding
n-1 words
n-1 words
A
4 \

Pzt D|e® xM) = patTD|g®) | gltnt2) (assumption)

rob of an-gram
P S T,z glnt2) (definition of

prob of a (n-1)-gram | D®, .. =) conditional prob)

*Question: How do we get these n-gram and (n-1)-gram probabilities?

«Answer: By counting them in some large corpus of text!
count (1) 2(®) . at—n+2) (statistical approximation)

count(z®), ... x(t—n+2))

—~

N-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

—as=the-plosctoi-stakied-the-clock=tae students opened their
L J

discard

Y
condition on this

count(students opened their w)

P(w|students opened their) =

For example, suppose that in the corpus:

“students opened their” occurred 1000 times

“students opened their books” occurred 400 times
* [1 P(books | students opened their) = 0.4

“students opened their exams” occurred 100 times

* [1 P(exams | students opened their) = 0.1

count(students opened their)

Should we have discarded the
“proctor” context?

67

Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never

(Partial) Solution: Add small

occurred in data? Then w has
probability 0!

\

\ 4

0 to the count for every w €
V. This is called smoothing.

P(wlstudents opened their) =

count(students opened their w)
count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in

(Partial) Solution: Just condition on

data? Then we can’t calculate
probability for any w!

\ 4

“opened their” instead.
This 1s called backoff.

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

68

Storage Problems with n-gram Language Models

Storage: Need to store
count for all n-grams
you saw In the corpus.

T~

count(students opened their w)

P(w|students opened their) =

count(students opened their)

Increasing n or increasing
corpus increases model size!

69

How to build a neural language model?

» Recall the Language Modeling task:
* Input: sequence of words W 2@ x®
 Output: prob. dist. of the next word Pz ® . 2W)

« How about a window-based neural model?

* We saw this applied to Named Entity Recognition in Lecture 2:

LOCATION

A

U
(000000000000 |

w

(0000 0000 0000 0000 0000]

f | f | I

museums in Paris are

amazi

70

A fixed-window neural Language Model

books
laptop
output distribution >
y = softmax(Uh + by) € RIV : -
a A Z0
(0]
U
hidden layer
00000000000
h=f(We+ b;) [-]
W

concatenated word embeddings

e=[eM:e?,e®); @] [OOOO 0000 0000 OOOO]

N N N N

words / one-hot vectors the opene thei
w(l),$(2),$(3)’$(4) 213(1) 533(2)? dm(S) ‘$(4)

nts 71

A fixed-window neural Language Model
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

Improvements over n-gram LM: book
. S aptop
» No sparsity problem s |
« Don’t need to store all observed n-grams
Remaining problems: a N 20
(0]
* Fixed window is too small U

* Enlarging window enlarges W (000000000000
 Window can never be large enough! A

« x()and x(") are multiplied by completely w

different weights in W. No symmetry in how [oooo 0000 0000 oooo]

the inputs are processed.

]

We need a neural architecture that can .

_ the opene thei

process any length input) cx®@s gaz® e
nts

From N-gram LMs to Word vectors

S
a N 70
(0]
] --.~\\\\\‘
Word embedding/Vectors !
(e00000000000)]
w

(0000 0000 0000 0000)|

]

the opene thei

nts

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)
1 the 1dea that is represented by a word, phrase, etc.
1 the 1dea that a person wants to express by using words, signs, etc.
3 the idea that 1s expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:
3 signifier (symbol) < signified (1dea or thing)
= denotational semantics

1 Tree = (&, &, F, ...}

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf

Representing words as discrete symbols

2 In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — a localist representation

2 Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel=[000000010000000]

2 Vector dimension = number of words in vocabulary (e.g., 500,000+)

These two vectors are orthogonal
There iIs no natural notion of similarity for one-hot vectors!

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf

Representing words by their context

Distributional semantics: A word’s meaning is given by the words that frequently
appear close-by

» “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

* One of the most successful ideas of modern statistical NLP!

« When a word w appears in a text, its context 1s the set of words that appear nearby
(within a fixed-size window).

* We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Word2Vec Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

ldea:

« We have a large corpus (“body”) of text: a long list of words

* Every word 1n a fixed vocabulary 1s represented by a vector

* Go through each position t in the text, which has a center word ¢ and context

(“outside™) words o

 Use the similarity of the word vectors for ¢ and o to calculate the probability of o given c
(or vice versa)

» Keep adjusting the word vectors to maximize this probability

P(Wt—z wa) P(Wt+2 I Wt) P(Wt—z |W) P(Wt+2 | Wt)

P(We_q | we) P(Wryq | We)

P(Weyq | we)

problems turning banking crises as problems turning into crises as

L .] L . J L v i L § J L Y J L Y
outside context words center word outside context words outside context words center word outside context words
in window of size 2 at position t in window of size 2 in window of size 2 at position t in window of size 2

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecs1.pdf

Word2vec: objective function

a1 We want to minimize the objective function:

1 T
J(O) = —T ;4 ;4].OgP(wt_|_j | wt,ﬁ)
=1

t=1 m<j<m
j#0
2 Question: How to calculate P(wyy; | wy; 6)

Answer: We will use two vectors per word w:
O Yw when w is a center word
O Uw when w 18 a context word

Then for a center word ¢ and a context word o: (softmax)

T . . .
P(o|c) = °xXP (uo 'uc) “max” because amplifies probability of largest
Y wey €XP (ugfvc) “soft” because still assigns some probability to smaller
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf

Word structure and subword models

We assume a fixed vocab of tens of thousands of words, built from the training set.
All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

Common { hat
words
learn

- pizza (index)

-2 tasty (index)
Variations { taaaaasty - UNK (index)

9

9

misspellings laern UNK (index)
novel items Transformerify

UNK (index)
Finite vocabulary assumptions make even less sense in many languages.
» Many languages exhibit complex morphology, or word structure.
 The effect 1s more word types, each occurring fewer times.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Word structure and subword models

Subword modeling in NLP encompasses a wide range of methods for reasoning about structure
below the word level. (Parts of words, characters, bytes.)

* The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
At training and testing time, each word 1s split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab’ as a subword.
3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

word vocab mapping embedding’ Common words end up being a part of

hat hat the subword vocabulary, while rarer

Common 2 [] - . . - .-
words { learn > learn - words are split into (sometimes intuitive,
Variations { taaaaasty > taa## aaa## sty — _sometimes not) components.
misspeumgs% laern > la## ern#t# == mm 2 INthe worst case, words are split into as
2 -

novel items Transformerify Transformer## ify

mm Many subwords as they have characters.

From static word vector to
contextualized word vectors

What's wrong with word2vec?

—0.224

e One vector for each word type y(bank) — | U-150
—0.290
0.276

e Complex characteristics of word use: semantics, syntactic
behavior, and connotations

e Polysemous words, e.g., bank, mouse

mouse! : a mouse controlling a computer system in 1968.
mouse? : a quiet animal like a mouse
bank! : ...a bank can hold the investments in a custodial account ...

bank? : ...as agriculture burgeons on the east bank, the river ...

Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

JEEE g

(Contextuahzed Word embeddlngs
1) t ® t *

the movie was terribly exciting !

f: (Wl, W9, ., Wn) — X1, -y X, (S Rd

Contextualized word embeddings

Source Nearest Neighbors
playing, game, games, played, players, plays, player,
s Play, football, multiplayer
Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik ’s | for his ability to hit in the clutch , as well as his all-round
. grounder {...} excellent play .
biLM

Olivia De Havilland
signed to do a Broadway
play for Garson {... }

{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

(Peters et al, 2018): Deep contextualized word representations

ELMo

e NAACL’18: Deep contextualized word representations
o Keyidea:

® Train an LSTM-based language model on some
large corpus

® Use the hidden states of the LSTM for each token
to compute a vector representation of each word

ELMo

Forward Language Model Backward Language Model
LSTM ‘ d ° .
Layer #2
L o Jull o.’ o | | Lo o I o o e o o ls [
LSTM Atk — Akt 0 o 0 ¢
Layer #1 - w w w w w
Embedding EE=E EIEEE [T 1] o) 1T 1]

words in the

sentence =i
(logp(tk | t1,...,tk—1;Oz, © LsTM, O5)
k=1
(_
+10gp(tk; | tk-i—l) s 7tNa @.’L'a @LSTMa @S))
t ™
softmax

input

How to use ELMo?

Ry = {xEM WEM WEM|j=1,.. L}« #oflayers
{bgi'1i=0,...,L},

hZM_ XLM hiM = ThLM h

LM]
k0 k k,j k,j k,j
L
ELMotask; E(Rk, @task:) _ ,ytask Z s;askhﬁ’]j_l
J=0

o \task: allows the task model to scale the entire ELMo vector

° SjtaSk: softmax-normalized weights across layers

® Plug ELMo into any (neural) NLP model: freeze all the LMs
weights and change the input representation to:

[x1; ELMo{*5*]
(could also insert into higher layers)

Pre-trained ELMo Models

Use ELMo In practice

https://allennlp.org/elmo

. . . # LSTM Hidden #
Link(Weights/Options i i
Model File) Parameters Size/Output Highway
i
(Millions) size Layers>
Small weights options 13.6 1024/128 1
Medium weights options 28.0 2048/256 1
Original weights options 93.6 4096/512 2
Original . ;
weights options 93.6 4096/512 2
(5.5B)

from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096

Compute two different representation for each token.

Each representation is a linear weighted combination for the

3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

use batch_to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'l, ['Another', '.'l]

character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

Also available in TensorFlow

BERT

e First released in Oct 2018.

e NAACL’19: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

How is BERT different from ELMo?

#1. Unidirectional context vs bidirectional context

#2. LSTMs vs Transformers (will talk later)

#3. The weights are not freezed, called fine-tuning

Bidirectional encoders

e Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

e Language understanding is bidirectional

Bidirectional RNINs

Bidirectionality is important in language representations:
the movie was terribly exciting !

terribly:
o left context “the movie was”

o right context “exciting !”

Why are LMs unidirectional?

Bidirectional encoders

e Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

e Language understanding is bidirectional

Unidirectional context
Build representation incrementally

open a bank
! I T

Layer2 [—| Layer2 [—| Layer2
! ! T

Layer2 —| Layer2 [—| Layer2

!

<s>

T

open

!

a

Bidirectional context
Words can “see themselves’

open

!

a

!

bank

Layer 2

—

Layer 2

Layer 2

Layer 2

Layer 2

b

Layer 2

T

<52

T

open

!

Masked language models (MLMs)

e Solution: Mask out 15% of the input words, and then predict the
masked words

store gallon

0 0
the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: too expensive to train
e Too much masking: not enough context

Masked language models (MLMs)

A little more complication:

Rather than always replacing the chosen
words with [MASK], the data generator will
do the following:

* 80% of the time: Replace the word with the
[MASK] token, e.g., my dog is hairy —
my dog is [MASK]

* 10% of the time: Replace the word with a
random word, €.g.,my dog is hairy — my
dog is apple

* 10% of the time: Keep the word un-
changed, €.g.,my dog is hairy — my dog
is hairy. The purpose of this is to bias the
representation towards the actual observed
word.

Because [MASK] is never seen when BERT is
used

Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is
followed after the first one.

Input — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label = 1snext

Input — [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

Label — NotNext

Recent papers show that NSP is not necessary...

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans
(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach

Pre-training and fine-tuning

0.1% 3 ark o,
Use the output of the Aardvark 85% Spam

masked word’s position
to predict the masked word

Possible classes :
All English words 10% Improvisation 15% Not Spam

0% | Zyzzyva

Classifier
[FFNN + Softmax]
LR]

BERT
BERT

Randomly mask
15% of tokens

[CLS] Letss stick to [MASK] g this skit

11 2| 3| a4 cee 512

Input [CLS] Help Prince Mayuk

[CLS] Lets stick to improvisatior

Pre-training Fine-tuning

Key idea: all the weights are fine-tuned on downstream tasks

Applications

Class
Label

—
B2 BBE™E- B2

BERT

(e[5 -

L][B [& |- |5

]

LI L] LI |
I_‘_l

Sentence 1

Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

EERES
BERT
[Sea] = || =

I
[cLS] Tok 1 Tok 2

Hid

Tok N

|
l

Single Sentence

(b) Single Sentence Classification Tasks:

SST-2, CoLA

* oo

BERT
e l[= - [[l [5]~ [&]
- e <
Question Paragraph

(c) Question Answering Tasks:
SQuUAD v1.1

[
[en o]]

(o] B-PER (o]
5 £
ST s) o
BERT
== &

R N

I

l

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

More detalls

® Input representations

Input [CLS] my dog is ‘ cute ‘ [SEP] he | likes H play ‘ ##ing | [SEP]

Token

Embeddings E[CLS] Em_.-' Edog Eis Ecute E[SEP] Ehe Elikes Epla\.-r EH‘mg E[SEP]
-+ +* + -+ -+ -+ + -+ -+ + +

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +

Position

Embeddings E, E, E, E, E, E; Ee E, Eg = =1

® Use word pieces instead of words: playing => play Assignment 4
##1ng

® Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)

® Released two model sizes: BERT_base, BERT large

Variants of
contextualized word vectors

Where we were: pretrained word embeddings Where we’re going: pretraining whole models

Some issues to think about: In modern NLP:
* The training data we have for our * All (or almost all) parameters in NLP networks
downstream task (like question are initialized via pretraining.
answering) must be sufficient to teach * Pretraining methods hide parts of the input from
all contextual aspects of language. the model, and train the model to reconstruct those
» Most of the parameters in our network parts.
are randomlv initialized!

? 57

Stronger:

v

e representations of language
— Notpretrained parameter initializations for etrained i
Strong NLP mOdels — retrainea jointly
_ * Probability distributions i i i
i i i i } (wo pretrained over language that we can

rd embeddings)
sample from . the mavie was .

... the mowe was ..

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

[Recall, movie gets the same word embedding,

) : [This model has learned how to represent
no matter what sentence it shows up in]

entire sentences through pretraining]

What can we learn from reconstructing the input?

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,

Overall, the value | got from the two hours watching it was the sum total of the
popcorn and the drink. The movie was .

The woman walked across the street, checking for traffic over shoulder.

[went to the ocean to see the fish, turtles, seals, and

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model ps(w: | wi—1), the probability distribution over words given their past contexts.
 There’s lots of data for this! (In English.)

Pretraining through language modeling:

* Train a neural network to perform language modeling on a large amount of text.
 Save the network parameters.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END ©/®
- : - - t t t t t t : t
(Transformer, LSTM, ++) (Transformer, LSTM, ++)
Iroh goes make tasty tea ... the movie was ...

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

https://arxiv.org/pdf/1511.01432.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Tt L o we a1 bl Sron reprenaons

o7 Encoder- » Good parts of decoders and encoders?
=23 Decoders « What’s the best way to pretrain them?

 Language models! What we’ve seen so far.
L2227 Decoders » Nice to generate from; can’t condition on future words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Pretraining encoders: what pretraining objective to use?

So far, we’ve looked at language model pretraining. But encoders get bidirectional context,
so we can’t do language modeling!

Idea: replace some fraction of words in the went
Input with a special [MASK] token; predict I [A b
these words.

hl, coey hT = Encoder(wl, co ,wT)
yi ~ Aw; +b

Only add loss terms from words that are “masked
out.” If & is the masked version of x, we’re
learning po(z |). Called Masked LM.

| [M] to the [M]

[Devlin et al.,

2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT: [Predict these!] went to store
* Predict a random 15% of (sub)word tokens. ¢ 4 4

» Replace input word with [MASK] 80%

of the time Transformer

* Replace mput word with a random token Encoder

10% of the time
* Leave imnput word unchanged 10% of the | | | | |

time (but still predict it!) I pizza to the [M]
* Why? Doesn’t let the model get complacent X
and not build strong representations of non-
masked words. (No masks are seen at fine- [Replaced] [Not replaced] [Masked]
tuning time!)

[Devlin et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

https://arxiv.org/pdf/1810.04805.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

 Gets bidirectional context — can condition on future!
* How do we train them to build strong representations?

53 Decoders * What's the best way to pretrain them?

» Language models! What we’ve seen so far.
L2227 Decoders * Nice to generate from; can’t condition on future words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Pretraining encoder-decoders: what pretraining objective to use?

For encoder-decoders, we could do something like language modeling, but where a prefix
of every input is provided to the encoder and is not predicted.

hl, c o ,hT = Encoder ('wl, co ,wT)
hT_|_1, .« .,hg = Decoder('wl, e ooy WT, hl, .o .,hT)

The encoder portion benefits from bidirectional context;
The decoder portion is used to train the whole model through
language modeling. Wi, ..., Wr

[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Replace different-length spans from the input with Tar)c.(uetsf BT
unique placeholders; decode out the spans that were e
removed!

Original text

Thank you fef inviting me to your party I%st week.

This is implemented in text preprocessing: it’s
still an objective that looks like language -

modeling at the decoder side. Thank you <{> me to your party y'(> week.

[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders: what pretraining objective to use?

President Franklin D.
Roosevelt was born
in January 1882.

A fascinating property of T5: it
can be finetuned to answer a

Pre-training

Fine-tuning

wide range of questions,
. . g q . [Vmen was Franklin D. T 5 1882
retrieving knowledge from its Roosevelt born?
parameters.
NQ WQ TQA
dev test
. Karpukhin et al. (2020) 41.5 424 579 -
NQ: Natural Qu?suons T5.1.1-Base 257 282 242 306 220millionparams
WQ: WebQuestions T5.1.1-Large 273 295 285 37.2 770 million params
TQA: Trivia QA T5.1.1-XL 29.5 324 36.0 45.1 3billion params
T5.1.1-XXL 328 356 429 52.5 11billion params
AH “Open_domain” Versions T5.1.1-XXL + SSM 352 42.8 519 61.6
[Raffel et al., 2018]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

https://arxiv.org/pdf/1910.10683.pdf

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

» GGets bidirectional context — can condition on future!

Encoders . : .
* How do we train them to build strong representations?
o7 Encoder- » Good parts of decoders and encoders?
=20 Decoders * What’s the best way to pretrain them?

* Language models! What we’ve seen so far.
L2771 Decoders ENice fo/generate from; can’t condition on futlire Words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Overview

Model Type Architecture Task

(a,b) — ¢
predicting the next word
b—c¢, b—oa

NLM [25] static 1-layer MLP

Skip-Gram [200] static 1-layer MLP 7 _ _
predicting neighboring words
CBow [200] static 1-layer MLP (a, C_) _> b
predicting central words
-) T - 3) 3
Glove [227] static 1-layer MLP Wi wj oc logp(#(wiwj))
predicting the log co-occurrence count
ELMO [230] contextualized LSTM (a,b,c,d) > e, (edcb)—a
bi-directional language model
BERT [66], Roberta [185] contextualized Transformers (a, |mask],c) — (L, b,)
ALBERT [154],XLNET [351] or Transformer-XL predicting masked words
Electra [54] contextualized Transformer (a,b,c.d) — (0. 1’. O’. b
replaced token prediction
T5 [241] (a,b,c,) — (d,e)

BART [158] contextualized Transformers predicting the sequence

(a,b, c,d) — e autoregressively
predicting the next word

GPT [240] contextualized Transformers

Benyou Wang et.al. Pre-trained Language Models in Biomedical Domain: A Systematic Survey. ACM Computing Survey.

Back to the language model
(next word predict)

Pretraining decoders

When using language model pretrained decoders, we can ignore that they were trained

to model p(w; | wy.t—1)

We can finetune them by training a
classifier on the last word’s hidden state.

hi, ..., hy =Decoder(w;,...,wr)
y~ Ahr +b

Where A4 and 4 are randomly initialized and
specified by the downstream task.
Gradients backpropagate through the whole
network.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

©/@?
Linear A,b
|
hy, ..., hy
W1, ..., Wr

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

Pretraining decoders

It’s natural to pretrain decoders as language models and then
use them as generators, finetuning their pe(w: | wi:t—1)

This is helpful in tasks where the output W2 W3 Wy W5 We
is a sequence with a vocabulary like that N OEm oEn mmEmAb
at p.retraining time! | | hi, ..., hy
* Dialogue (context=dialogue history)
« Summarization (context=document) IW
hi,. .., hr = Decoder(wy,...,wr)
wt ~ Aht_]_ _I_ b W1 Wy W3 Wy Wsg

Where A, b were pretrained in the [Note how the linear layer has been pretrained.]

language model!
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Increasingly convincing generations (GPT2) [Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language
models. GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to
produce relatively convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz. and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

GPT-3, In-context learning, and very large models

So far, we’ve interacted with pretrained models in two ways:
« Sample from the distributions they define (maybe providing a prompt)
* Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without
gradient steps simply from examples you provide within their contexts.

GPT-3 1s the canonical example of this. The largest TS model had 11
billion parameters. GPT-3 has 175 billion parameters.

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf

Today’s lecture

« Language model in a narrow sense
(Probabillity theory, N-gram language model)

« Language model in broad sense

 More thoughts on language model

_M (next word predict) is scalable

_M does not need annotations

_M is simple such that it is easily to adapt it many tasks
_M could model human thoughts

_M is efficient to capture knowledge (imagine use images to record
Knowledge?)

Humans do LM everyday (do next-word/ next-second prediction)

Five-minute Tutorial

Python library

We provide a Python library, which you can install as follows:

$ pip install openai

https://platform.openai.com/docs/libraries/python-library

main.py +
import os

import openai

al

2

3

4 # Load your API key from an environment variable or secret management service
5 OPENAI_API_KEY "sk-ZzCM7HXVRBKWIChQfUxwT3BlbkFIOmSfEpBOOBNSF4IpCqgfE"
6

7

8

5

openai.api_key = os.getenv(OPENAI_API_KEY)

chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo"”, messages=[{"role": "user", "content": "Hello world"}])

https://platform.openai.com/docs/libraries/python-library

Prompt Engineering

Related resource:

* https://www.promptingguide.ai/zh
https://www.youtube.com/watch?v=dOxUroR57xs&ab_channel=ElvisSaravia
https://github.com/dair-ai/Prompt-Engineering-Guide

\/
%*
\/
%*

https://www.promptingguide.ai/zh
https://www.youtube.com/watch?v=dOxUroR57xs&ab_channel=ElvisSaravia

Take some time!

. Use ChatGPT API by yourself.

Assignment 1: Using ChatGPT API

This will be released in the next week!
See updates 1n our BB system, WeChat and Emails.

Acknowledgement

. Princeton COS 484: Natural Language Processing.
Contextualized Word Embeddings. Fall 2019

. CS447: Natural Language Processing. Language Models.
http://courses.engr.illinois.edu/cs447

