CSC6203/CIE6021: Y
Large Language Model #t e %k B R

The Chinese University of Hong Kong, Shenzhen

Lecture 3: Architecture engineering and scaling law:
Transformer and beyond

Winter 2023
Benyou Wang
School of Data Science

Torecap...

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
*P(on|the cat sat) x P(the|the cat sat on)
*P(mat|the cat sat on the)

Implicit order

GPT-3 still acts in this way but the model is implemented as a very large neural network of
175-billion parameters!

Language models:Broad Sense

< __Decoder-only models (GPT-x models)
< Encoder-only models (BERT, RoBERTa, ELECTRA)
< Encoder-decoder models (T5, BART)

Ksp
=

Mask LM Mask LM
& 5 3

The latter two usually involve a
different pre-training objective.

Epcis) E1 e EN E[SEP] E1’ S EM’
==l =
i e

()= (). (=)

Masked Sentence A Masked Sentence B

[T][o][T,] [T,] ["translate English to German: That is good."

"cola sentence: The
course is jumping well."

BERT

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

LJ LT LI i [

*
Unlabeled Sentence A and B Pair

"Das ist gut."

"six people hospitalized after
a storm in attala county."

]

Language model using neural networks

[oun G

A

]

GPT-3/ChatGPT/GPT4 have
Back-box neural networks:

175B+ parameters
Humans have 100B+
neurons

~

Today’s Lecture— Big Picture

Which neural networks should be used for

LLM?

P38
t

AP A A A A

6 6 & o o

Recurrent NNs

v Multilayer Perceptron (MLP)
v Convolutional neural network
v Recurrent neural network

v" Transformer

Inputs
Outputs

MLP

_ Transformer
Convolutional NNs -

eeeeeeeeeeee

convolutional layer Multilayer percep-

Which Transformer is so powerful?

Today’s lecture

« MLP
+: Strongest inductive bias: if all words are concatenated
+: Weakest inductive bias: if all words are averaged
- : The interaction at the token-level is too weak
« CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- : Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
« Transformer
+: Achieve global dependence at the token-level by decoupling token-level
interaction and feature-level abstraction into two components, in SAN and FNN.

 Scaling law and emergent ability

Semantic Abstraction
and Semantic composition

What Is Semantic abstraction?

Conv1-2 Conv2-2 : Conv3-4 Conv4-4 Conv5-4

Pixel -> texture -> region -> object -> relation -> semantics->

Higher-level layers deal with higher-degree abstraction

Input: | think therefore |

Neural network layers > Lexical Analysis
Neural network layers p---------co-cmmommom- > Syntactic Analysis

v

Neural network layers | ----occooooomooo- > Semantic Analysis

Neural network layers f-----"=-=="="==------- > Discourse Integration
Neural network layers > Pragmatic Analysis

\ v

output: am

What is Semantic composition?

& » XA F(npy B

The Chinese Univarsity of Hong Keag, s % - TRE

vory (&%) towe) Ivory (RF1E)

Semantic composition is the task of understanding the meaning of text by composing
the meanings of the individual words in the text.

It involves token interaction

Semantic composition vs. Semantic Abstraction

Token level: | think therefore | am

J0]JO9A PIOM |9N9| alnleo

‘ Composition w/ token interaction , Non-linear Abstraction w/t token interaction

How to combine composition and Abstraction

A flatten solution: MLP (e.g. NNLM)

| m—) —] e—] e—

Complexity: O(D?1?)

Yoshua Bengio et.al A Neural Probabilistic Language Model. NIPS 2003

How to combine composition and Abstraction

A variant of MLP (e.g. CBoW)
E Remove token interaction in

deeper layers

e N s ™\
A e T L ! Mean pooling (token
e ST interaction) in the first layer
N e e i
R-SSIIIIIISIIIIIN
1
Complexity: O(D?) _ e),

T Mikolov et.al Efficient Estimation of Word Representations in Vector Space. https://arxiv.org/abs/1301.3781

Inductive bias of composition

How we believe tokens should be interacted as the

inductive bias, also considering semantic abstraction
simultaneously?

Definition: The inductive bias (a.k.a learning bias) of a learning algorithm is the set of assumptions that a
machine learning algorithm makes about the relationship between input variables (features) and output

variables (labels) based on the training data.

Inductive bias of composition

CNN: local composition within a window
RNN: recurrently compose tokens from left to right or right to left.

Mt

Issues of CNN and RNN

CNN: local composition:

How to make long-term token interaction that is longer than the
window size?

RNN: recurrent composition
What if we forget tokens checked 10 timestamp ago?

How can we freely composition tokens without
constraints (weaker inductive bias) ?

The modern deep learning is just using weaker inductive biases and make more data-
driven instead of prior-driven.

Make each token to see every other token

588 .
o
CESCRSGELDD
The
‘I_'he nxn firm
firm

for
which

Jacob E— New };.. 7 od
worked — LS KRR which
sen to i:".: "'"}L "=
him \‘v',*' 0 88 LV
o 'bé:“ ;L.A:‘!’:;:\.::\" Jacob
\I\(ls:\é him SN

Attn Scores sent ~ Wworked

Efficiency: Decompose abstraction and composition

FFEN: abstraction

SAN: composition

FFEN: abstraction

SAN: composition

0

]

]

o

.

10]09A PIOM :[9A3]| 94NnTeaH

FFN

Composition w/ token inte

SAN l

raction

&)ken level: | think therefore |

an

Today’s lecture

« MLP
+: Strongest inductive bias: if all words are concatenated
+: Weakest inductive bias: if all words are averaged
- : The interaction at the token-level is too weak
« CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- : Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
« Transformer
+: Achieve global dependence at the token-level by decoupling token-level
interaction and feature-level abstraction into two components, in SAN and FNN.

 Scaling law and emergent ability

Multilayer Perceptron (MLP)

 Introduction of MLP
« Forward Propagation
« Backward Propagation

» Code Implementation

Multilayer Perceptron (MLP)

Definition: The Multilayer Perceptron (MLP) is a type of artificial neural network
(ANN) that consists of multiple layers of interconnected artificial neurons or
perceptrons.

A perceptron can be seen as a single neuron
(one output unit with a vector or layer of input units):

Output unit: scalar y = f(X)

(:{' Input layer: vector X

Cutput
Layer

Inpt Hidden
Layer Layear

Feed-forward NNs

* The units are connected with no cycles
* The outputs from units in each layer are passed to units in the next higher layer.
No outputs are passed back to lower layers

Fully-connected (FC) layers:
All the units from one layer are

@ (fully connected to every unit of
‘ output layer the next Iayer.

hidden layer 1 hidden layer 2

.
0}0

l/‘

DAY
(X

/
J

input layer

= lambda x: 1.0/(1.0 + np.exp(-x))
= np.random.randn(3, 1)
f(np.dot(Wl, x) + bl)
f(np.dot(W2, hl) + b2)
np.dot(W3, h2) + b3

£
X

hl
h2

o
c
~+
]

Feedforward neural language models

A Neural Probabilistic Language Model (Ben gio et al 2003)

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Yoshua Bengio

Probabilistic models of sequences: In the 1990s, Bengio combined neural networks with probabilistic
models of sequences, such as hidden Markov models. These ideas were incorporated into a system
used by AT&T/NCR for reading handwritten checks, were considered a pinnacle of neural network
research in the 1990s, and modern deep learning speech recognition systems are extending these
concepts.

High-dimensional word embeddings and attention: In 2000, Bengio authored the landmark paper, “A
Neural Probabilistic Language Model,” that introduced high-dimension word embeddings as a
representation of word meaning. Bengio’s insights had a huge and lasting impact on natural language
processing tasks including language translation, question answering, and visual question answering.
His group also introduced a form of attention mechanism which led to breakthroughs in machine
translation and form a key component of sequential processing with deep learning.

Generative adversarial networks: Since 2010, Bengio’s papers on generative deep learning, in
particular the Generative Adversarial Networks (GANs) developed with Ian Goodfellow, have spawned
a revolution in computer vision and computer graphics. In one fascinating application of this work,
computers can actually create original images, reminiscent of the creativity that is considered a
hallmark of human intelligence.

https://awards.acm.org/about/2018-turing

Feedforward neural language models

A Neural Probabilistic Language MOdel(Bengio etal., 2003)

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Key idea: Instead of estimating raw probabilities, let’s use a

neural network to fit the probabilistic distribution of language!

P(w | lamagood) P(w | Iam agreat)

Key ingredient: word embeddings e(good) = e(great)

Hope: this would give us similar distributions for similar contexts!

Backpropagation

Definition:
Backpropagation, short for "backward propagation of errors," is a supervised learning algorithm used
for training artificial neural networks, including deep learning models like Multilayer Perceptrons

- (2) al(l) :IG) 01(3)

(MLPs). s O
Xy = a,\V O \

X3 = ayh O
~@
32(2) (12(2) 52(3) a2(3)
Xy = (‘4(” O

Input layer Hidden 1 layer Hidden 2 layer Output layer

w b w@ p@ W

Backpropagation: a simple example

f

-12

f(z,y,2) = (z +y)z X 22
eg.x=-2,y=5z=-4 3@
¥ 3

dq dq

o % Z -4

of of
f=qz 50— %79 — 4

of oOf O

Want: 1 5 O

Ox’ Oy’ 0z

Backpropagation: a simple example

f(a:,y,z):(3:+y)z X -2
eg.x=-2,y=5z=4
qg=x-+Yy %:1,%:1
of of
f=qz %= %9 =4
of of o0
Want: L o 4

Ox’ Oy’ 0z

Backpropagation: a simple example

f(wayaz):($+y)z X -2
eg9.Xx=-2,y=95,z=-4 3@‘13
y 5
g dq f-12
g=z+y =145 =1 1
= z 4
of of b
— Ay —--—:Z,-—--:
f=q aq e % ﬁ
of of 0O
Want: 9 u 0z

Ox’ Oy’ 0z

Backpropagation: a simple example

f(a:,y,z)z(:r—l—y)z X -2
eg9.Xx=-2,y=95,z=-4 D@‘N
y 5
f -12
q:.’L'-'—y %:1,%:1 1
z -4
of of B o
— -—-——-—:Z,——-:
f=q aq e % ﬁ
of of 0O
Want: o o =

Ox’ Oy’ 0z

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

_ 9 . O0q
qg=+Yy a—l,@—l
of of
f=gqz il A
Chain rule: 0y
of of Oof
Want: e’ By’ 02 of Bf aq
By Bqay

Upstream Local
gradient gradient

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

_ 0 . 09
qg=+Yy a—l,@—l
of of
f=qz 9 o 4
| of Of of Chain rule: oy
Want: oz’ By’ 02 ﬂ _ Of oq

>k X
Upstream Local
gradient gradient

Backpropagation: a simple example

f(:c,y,z) 3 (w—l—y)z
e.g.x=-2,y=5,z=_4

— dq oqg
of _ of
f:qz E—Z,E—q
~of of of Chain rule: Oz
et 53y % of _ 0f %

a_x_aq(?a:

2 \
Upstream Local
gradient gradient

/ S
“local gradient”
= 8

Z
“Downstream
gradients oL
% 8z
%
oL “Upstream
gradient”

Another example
1

Sigmoid Activation Function

f(w’m) = 1 =1 e—(w0$0+w1$1+w2)

f(X)

®
®
®

Another example
1

f(w?m) = 1 4 e—(wox0+w1:c1+w2)

w0 2.00

wO: [0.2] x [-1] = -0.2

0.40

x0:[0.2] x [2] = 0.4

wl -3.00

1.00 /*]\ -1.00 @ 0.37 CI\ 1.37 mx\ 0.73
020 _/ 020 U/ 053 __/J 05 _J 100

xl -2

w2 -3.00
0.20

if d
5 %:e f(w)zl o5 é
d
— —di —a f.(z)=c+z 5

[upstream gradient] x [local gradient]

Another example

1 : . :
flw,z) = Sigmoid . Computational graph
(’) iy e—(woxg+wlx1+w2) function 0’(33) — 4 e < representation may not
be unique. Choose one
nl where local gradients at
Sigmoid each node can be easily
1.00 /*—]\ -1.00 @ 0.37 Q 1.37 /l/\ 0.73 expressed!

020 | _J 020 053 T 0ss U w0
[upstream gradient] x [local gradient]

[1.00] x [(1 - 0.73) (0.73)] = 0.2

Sigmoid local ~ do(z) e (1+e—r ~ 1) (1
gradient: dz (1+ 6_2)2 1+e® 1+e*

) = (- s@)o(a)

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

y
(X,y,z are scalars)

class Multiply(torch.autograd.Function):

@staticmethod

def forward(ctx, x, y):
ctx.save_for_backward(x, y) *————
Z Ry
return z

@staticmethod

Need to cache
some values for
use in backward

Upstream

def backward(ctx, grad_z): =
X, y = ctx.saved_tensors
grad_x =y x grad_z # dz/dx *x dL/dz
grad_y = X x grad_z # dz/dy *x dL/dz
return grad_x, grad_y

gradient

Multiply upstream
and local gradients

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTQrCh S|gm0|d |ayer
#else
Void THWN_(S1gmoid_updateOutput) Forward Forward actually defined elsewnhere...
THNNState xstate,
THTensor *input, 1 static void sigmoid_kernel(TensorIterator& iter) {
THTensor xoutput) . . AT_DISPATCH_FLOATING_TYPES(iter.dtype(), “sigmoid_cpu", [&1() {
{ o\T) = 1 — unary_kernel_vec(
THTensor_(sigmoid) (output, input); + € iter,
} [=](scalar_t a) -> scalar_t {[return (1 / (1 + std::exp((-a)))); |},

[=] (Vec256<scalar_t> a) {
a = Vec256<scalar_t>((scalar_t)(9)) - a;

void THNN_(Sigmoid_updateGradInput)(a = a.exp();
THNNState *state, a = Vec256<scalar_t>((scalar_t)(1)) + a;
THTensor *gradOutput, A A eEprasEL
THTensor *gradInput,
THTensor *output)
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs) (gradInput, output); Backward
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
xgradInput_data = *gradOutput_data x (1. - z) * z; (1 - 0'(.’13)) 0'(23)
):
}
#endif

https://github.com/pytorch/pytorch/blob/517¢7¢c98610402e2746586¢78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp#L33

Common Challenges in Backward Propagation

« Vanishing Gradients

« Exploding Gradient

» Overfitting

* Local Minima

« Gradient Descent Variants
« Training Time

 Poor Initialization

Summary:

- Backward propagration is a critical but challenging step in training neural networks
- Addressing these issues requires a combination of architectural choices,
optimization techniques, and regularization methods.

Trapl: Vanishing gradients on sigmoids

sigmoid function derivative of sigmoid

1.0 | 1.0 |

0.8 |- 0.8 |-

derivative is zero at tails

0.6 - 0.6 |-

0.4 |- 0.4

- —k |
0.0 |

=10 -5 0 5 10 =10 -5 0 5 10

0.2

0.0

if you’re using sigmoids or tanh non-linearities in your network and you
understand backpropagation you should always be nervous about making sure
that the initialization doesn’t cause them to be fully saturated.

Trap2: Dying ReLLUs

RelLU function derivative of RelLU

1ol : ! L

0.8 |- . -
o | derivative exadtly zero here
0.4 -

0.2 |-

0.0 |-

-10 =5 0 5 10 -10 -5 0 5 10

If you understand backpropagation and your network has ReLUs, you’re always
nervous about dead ReLLUs. These are neurons that never turn on for any example in
your entire training set and will remain permanently dead. Neurons can also die
during training, usually as a symptom of aggressive learning rates.

Trap3: Exploding gradients in RNNs

=5 # dimensionality of hidden state
= 50 # number of time steps y - ¥ P :
h = np.random.randn(H,H) if the largest eigenvalue is > 1, gradient will explode

if the largest eigenvalue is < 1, gradient will vanish

forward pass of an RNN (ignoring inputs x)
hs = {}
ss = {}
hs[-1] = np.random. randn(H)
for t in xrange(T):
ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(©, ss[t])

backward pass of the RNN
dhs = {}
dss = {}
dhs[T-1] = np.random.randn(H) # start off Ahe chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > @) * dhs[t] # bgfkprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state

If you understand backpropagation and you’re using RNNs you are nervous about having
to do gradient clipping, or you prefer to use an LSTM.

Review: MLP

Breif introduction of MLP;
2. Forward propagation and backward propagation;
3. Common Challenges in Backward Propagation

Limitations of MLP: hys(X)

Limited Spatial Invariance (vs. CNNSs) LaverL
yeri,

Sequential Information Handling (vs. RNNS)

Positional Encoding (vs. Transformers) +1

Attention Mechanism (vs. Transformers)

Laver L. Laver L.
Hierarchical Feature Extraction (vs. CNNs and Transformers)
Parameter Efficiency (vs. Transformers)

Pre-training Efficiency (vs. Transformers)

© N O 0~ 0D PRE

Structured Input Bias (vs. CNNs and Transformers)

C N N &R N N - Convolutional Neural Network (CNN)
» Recurrent Neural Network (RNN)

Convolutional Neural Network

——

Convolution + RelLU + Max Poolng l Fully Connected Layer "

Feature Extraction in multiple hidden layers Classification in the output layer

.%c

Recurrent Neural Network

Recurrent Noural Network

Today’s lecture

« MLP
+: Strongest inductive bias: if all words are concated
+: Weakest inductive bias: if all words are averaged
- : The interaction at the token-level is too weak
« CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- : Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
« Transformer
+: Achieve global dependence at the token-level by decoupling token-level
interaction and feature-level abstraction into two components, in SAN and FNN.

 Scaling law and emergent ability

CNN&RNN

CNN

Convolutional Neural Network

What is CNN?
Motivation: Image Processing
Key Components

- Convolutional Layers

- Pooling Layers

- Fully Connected Layers

Hierarchical Feature Extraction

Typical Convolutional Neural Network (CN.

Featured maps layer

Feature Extraction

Output

e
Fully connected layer

l Probabilistic Il
distribution

Convolutional NNs 1n 1image classification

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

=2 —

Key components: 1) convolution; 2) pooling; 3) multiple channels (feature maps)

Convolutional NNs for text classification

wait
for
the
video
and
do

rent
it

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

(Kim 2014): Convolutional Neural Networks for Sentence Classification

CLICTICL]

Convolutional Sequence to Sequence Learning

<p> They agree </s> <p>

Embeddings [H_H_ }——

Convolutions

Gated
Linear
Units

Attention

Dot products

H

H_H_H_H

P> <p>

<s> Sie stimmen zu

"

4

Y

Sie stmmen zu </s>

Encoder and decoder are simple blocks of convolution
operation followed by nonlinearity on fixed size of input.

Introduce a concept of order preservation as a
positional vectors p = (p_1,p_2 ...,p_m). In
combination of both input elements are represented as
E=(e_1=w_14+p_1,e_2=w_2+p_2,

e, €_M=W_m+p_m).

Adds a linear mapping to project between the embedding
size f and the convolution outputs that are size 2d.

Computes a distribution over the T possible next target
elements y_i+1 by transforming the top decoder output
h_i_lvia alinear layer with weights and bias.

https://browse.arxiv.org/pdf/1705.03122.pdf

RNN

Recurrent Neural Network

outputs {
(optional)

hidden states

input sequence (any {
length)

Core idea: Apply the same
weights W repeatedly

v

A Simple RNN Language Model T i eucents opened the)

s laptop
S
output distribution

:l)(t) = softmax (Uh,(t) ok b2> e RIVI : _m

a Z0
(o}
U
h(©0) hrD h(2) h®) r4
hidden states ® @ (o} (6} @
) _ (t—1)) Q| W, |@| Wi |0l WL |0l Wr |@®
RO = (Wph(™) + Weel + by) 4 ° o ° o
h(® is the initial hidden state @ @ @ 0] @
- \
W, W, W, W,
_ o) O 5 (@
word embeddings cW[O] @@ 3O @)@
e® — Ex® © o o o
o (@) o @)
words / one-hot vectors the opene thei

(t)] 2) (3) (4)
T\ epN — T o i e
Note: this input sequence coulg b% u/d
— ents
much longer now!

R N N Language Models gy = P(ﬂi)(o‘r’glihe students opened their)

RNN Advantages:
« Can process any length input
« Computation for step t can (in

theory) use information from many

steps back

* Model size doesn’t increase for longer | @

input context
« Same weights applied on every

timestep, so there is symmetry in how

inputs are processed.
RNN Disadvantages:
 Recurrent computation is slow

 In practice, difficult to access
information from many steps
back

s laptop
S
a 70
(0]
U
h(©0) h(L h(2) h®) h4) n
0] e @ (0] @
Wh |@| Wi |@| Wh (0| Wr |@
(0] @ 0] @
(O] @ 0] @
) - -
We We We We
2| ofe] wofg] ofS
(1) (2) 3] © (4)
el “le| ¢ lo| ¢ le
°of o o e
~More on the opene thei
these 21 @y dz® z@
later dents

Training an RNN Language Model

= negative log prob of “students”
— [JD(9) J2)(9) J®3)(6) J4(6)

Loss

Predicted prob dists — . 5 el G 4)
U U U U
h(©0) rD h(h®) h4
@ @ (0] @ 0]
@ W, |0\ W, |@| Wr |[@0| Wr |O®| W,
@ @ 1@ @ (0]
0] 0] @ (0] @
N N N N
We We We We
o] ofS] wof3] ofS
1 2)| © 3| © (4)
eVe|l ¢lo| ¢lo| ¢ eo
o o o (@)
Corpus — the students opened their exams

2D e e 2@

Training an RNN Language Model

| “Teacher forcing”|

T
Loss —— J0@) + J@@O) + JO@G) + JD@G) + .. J(@)z%zﬂ”(@)
T 1]
Predicted probdists —, 4@ el G G
N
U U U U
h(©0) rD h(h®) h4
(@ (& (O () (O]
@ W, |0\ W, |@| Wr |[@0| Wr |O®| W,
@ e 1@ @ @
(@) @ (0 (6] (&)
N N N N
We We We We
: (@) () :
(1) (2) © 3)| © (4)
el “le|l “le|l € le

o o o o
Corpus — the students opened their exams
20 2 23 z@

Problems with RNNs: Vanishing and Exploding Gradients

J® ()

(eoeo)
s
(eco0]
s
(ec00]
s
se000)

Vanishing gradient intuition

J@ (9)
A h(2) h®) h(

@ 0] 0]

o) 4 0 w 0 w

@ @ @

@ (0] 0] Q@
oI _ 9
oh(1)

Vanishing gradient intuition

J(6)
h(1) h® R(3) B
aJW 9p® §g@
R — 9D " gh®

chain rule!

Vanishing gradient intuition

J(4)(9)

R h(® h®) h(

(5) (6) [5)

) 44) 44) W

[5) [5) [5)

6) 5) 5) 6)
oJ@w on oh® 9J@

R~ R " RS R

chain rule!

Vanishing gradient intuition

J(6)
N
htl) h(? h() h4)

@ (@ @ @

@ w 0 W o w °

@ @ @ @

@ @ @ @
a.J@ N Oh(2) . Oh3) y oh) | ('-)__](4)
OhL) — 9h) Oh(2) oh® * oh®

chain rule!

Vanishing gradient intuition

J(6)
N
A h(2) h®) h(4)

O o) o) 0

o) w o) w O w o)

O ¢) o) 0

0 o) o) 0
9J@ [oh® 5.7
oh® ~ |ah® STNEY

Vanishing gradient problem:
When these are small, the gradient

What happens if these are small? signal gets smaller and smaller as it
backpropagates further

Why is exploding gradient a problem?

« If the gradient becomes too big, then the SGD update step becomes too big:
learning rate
new old -
grew = gold _ V.7 (0)
graoTient

 This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)

* You think you’ve found a hill to climb, but suddenly you’re in Iowa

* In the worst case, this will result in Inf or NaN in your network (then
you have to restart training from an earlier checkpoint)

Is vanishing/exploding gradient just an RNN problem?

« No! It can be a problem for all neural architectures (including feed-forward and

convolutional), especially very deep ones.
* Due to chainrule / choice of nonlinearity function, gradient can become vanishingly small as it
backpropagates
 Thus, lower layers are learned very slowly (i.e., are hard to train)
 Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example:
e Residual connections aka “ResNet”
« Also known as skip-connections

» The identity connection
preserves information by default

¢« This makes deep networks much Figure 2. Residual learning: a building block.
easier to train

identity

"Deep Residual Learning for Image Recognition”, He et al, 2015.
https://arxiv.org/pdf/1512.03385.pdf

Transformer

« Encoder

» Decoder

» Self-attention

» Multi-head self-attention

* Positional Encoding

Transformer

 Encoder

« Decoder

« Self-attention

* Multi-head self-attention

« Positional Encoding

Today’s lecture

« MLP
+: Strongest inductive bias: if all words are concated
+: Weakest inductive bias: if all words are averaged
- : The interaction at the token-level is too weak
« CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- : Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
« Transformer
+: Achieve global dependence at the token-level by decoupling token-level
interaction and feature-level abstraction into two components, in SAN and FNN.

 Scaling law and emergent ability

Output

Probabilities
[Softmax)
1
(Linear)
& t N
[Add & Norm J=—
Feed
Forward
- i ~ [Add & Norm Je—
—{Add & Norm } Multi-Head
Feed Attention
Forward P P P N x
A
[F
Nisc [Add & Norm Jee
—{ Add & Norm] Masked
Multi-Head Multi-Head
Attention Attention
—] -/

- _J \ J
Positional Positional
E i 4 @_® i

ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

o

N~—

——

1 ~\
~—>| Add & Norm)

Feed
Forward

A

~—>| Add & Norm

Multi-Head
Attention

At 2

Output
Probabilities

[Softmax)

1

| Linear)|
4

| |
[Add & Norm =~

Feed
Forward

Multi-Head
Attention

2 2 2

_/

Positional
Encoding

Input
Embedding

I

Inputs

[Add & Norm Je—

Masked
Multi-Head
Attention

At 2

|

| Add & Norm J=—

—JJ

Output
Embedding

I

Outputs
(shifted right)

o0

Positional
Encoding

_

N~—

——

1 ~\
~—>| Add & Norm)

Feed
Forward

A

~—>| Add & Norm

Multi-Head
Attention

At 2

Probabilities

[Softmax)

T dedbder

| Linear)|
4

| |
[Add & Norm =~

Feed
Forward

|

| Add & Norm J=—

Multi-Head
Attention

22

_/

Positional
Encoding

Input
Embedding

I

Inputs

[Add & Norm Je—

Masked
Multi-Head
Attention
. e

—JJ

Positional
Encoding

o0

Output
Embedding

I

Outputs
shifted right

] [Vaswani et al. 2017]
(in encoder)

Self-attention

OO0O

[Vaswani et al. 2017]

Self-attention (in encoder)

(e]e]e]e)] (@) (@] (@) (@] (@) @) @)
o o o o o o o
o o o o o o o
o @) @) o o o o

K

Vv

(elele)e®) (eeleole®);
Layer p I I I

| |
Nobel committee awards

[Vaswani et al. 2017]

Self-attention (in encoder)

optics 6 6 6 6 6 6 6
Strickland awards | (@) @) 8 8 8 8
committee | O o o o o o O
Nobel 8 8 e g Q Q 8
Q OO00) OO0 ~OO
K [eeYe)e) (eleYele)
O000) O000)
v (eYelele®) (e]elele)
Layer p I : I I

Nobel commli’rTee Iawar'ds | erlo aldvanced

[Vaswani et al. 2017]

Self-attention (in encoder)

optics 6 6 6 6 6 6 6
advanced | © @) o o o @) @)
who |2 @ o @) @) o O
Strickland 8 8 8 8 8 8 8
awards | (@) o @) @) @) O
A committee Q O e g e e Q
Nobel
K O000) 0000)

Layérp ©O0O) ([CO0O) (OSSO

i
Nobel committee awards advanced optics

[Vaswani et al. 2017]

Self-attention (in encoder)

optics 6 6 6 6 6 6
advanced o o O Q Q e,

who o ~ Q Q Q S S
Strickland Q [.] Q P 2 S 3

o O] = © O @ @,

aw.ards O ‘24 Q\ O @) O @)

A committee 8 —_ Q.‘\U 8 8 8

Nobel N =

KOOSO FToSL0) S0 O a0 0 —>~0000)

Q @mra-ft@ QOOJ) rc-moj e DO (©000)

K 0000 oooo 5000 /(5000
Lay¥r p ©o00) (@O0

|

| | | | | |
Nobel committee awards who advanced

[Vaswani et al. 2017]

Self-attention (in encoder)

optics
advanced
who
Strickland
awards
committee

A Nobel

(0000000)
(0000000)
(0000000)
(@000000)
(0000000)
(0000000)
(0000000)

Q
K
Layérp (lelelo Ml (elelele) (CGGY [@SGY (GOTY

I I I I I
Nobel committee awards who advanced

[Vaswani et al. 2017]

Self-attention (in encoder)

optics 6 6 6 6 6 6 6
advanced | © @) @) o o @) @)
who |2 @ o @) @) o O
Strickland 8 8 8 8 8 8 8
awards | (@) o @) @) @) O
A Repare & \=) \=) O \=) \=) =)
K 0000)|f OO0
Layér p (elelele) (O_)

I
Nobel committee awards advanced

[Vaswani et al. 2017]

Self-attention (in encoder)

optics (@) (O] (O] (O] (O] (@] (@)
advanced | © @) @) @) o o @)

who |© @ @) @) O @) ®)
Strickland 8 8 8 8 8 : 8
awards | O o (@) @) o O @)

A (iln;nt:g:ee O 94 LC_)J L!J 8 8 94

00O (elelel®)) (elelele) OO0 QOO0 OO0 OO0

O000) O000) QOO0 QOO0 QOO0 OO0O

(©S0O) ([©55Y (CO00) (@009 (©S0O
1

I I I I I I
Nobel committee awards who advanced

[Vaswani et al. 2017]

Multi-head self-attention

(] =|® @] =20 (IO SI2|O| (IO —(A=2|O Sl 2|0
optics?ooo 6.00 OOOO GOOO OO.O OOOO ?Oo.
- SISI8IS SISIIS) [SISI88] [SI88IS| [S[S[S[S] [S[S]ele] [Sl8lele
who @O olle) |0 o ®) o O
Strickland8008 8008 8008 8088 8.88 3088 8088
wats |S1S19— |8(|Q19 |8|319— [O|819— |15|8|1@— [5|8l9— 5|81~
committee Q_J QL_J gx._J .JQJ 98 88 88

o000 o]o]o]e)
o000 o000
OO0 OO0
(eYeleYe®) QOO0 QOO0 (CO00) (OO0 (0000
1

I I I I I I
Nobel committee awards who advanced

[Vaswani et al. 2017]

Multi-head self-attention

EOOOO) }(CiOOO) }(CiOOO)

aics (@ S[RLO] (O18BILIS] (O18]RID| (ol8|2[e| ol8]|®e| @l8]|2|8| (@3|2]e

o o o o o @) o

@ @ @ o o o o

advancedgoog 2008 80.8 8.08 8008 8008 8008
e i518I1819| |el88le] 18[8]8(9] 1o[88]e] [olalg|e] [@|8I8le] 1o8|®|e
Strlcklandoooo OOOO OOOO o o] |6 oo |@ Olo] | olle)
wats | SISO (0|19 [8|312— [BI819= |5(81e— [5|819— |6(81e—

A committee | (O p—/ Or= QN_J .J;J 8\._4 8\._4 o=

o000 o]o]o]e)
o000 o000
OO0 OO0
(eYeleYe®) QOO0 QOO0 (CO00) (OO0 (0000
1

I I I I I I
Nobel committee awards who advanced

[Vaswani et al. 2017]

Multi-head self-attention
/‘ (oofoo) (oofoo) (oofoo)

Feed Feed Feed Feed Feed Feed Feed

Eorward Eorward Eornward Eorward Eonpward Eaonward Eorward

}o—'ﬁooo ;o'oo) ﬁo’oo}

)

P

optics
advanced
who
Strickland
awards
committee

(0000000)

(0000000
0000000)

(0000000
(0000000)

(0000000)

(0000000)

(0000000)
(0000000)
(0000000)
(0000000)
(0000000)
(0000000)
(0000000)

(0000000
(0000000)
(0000000
(0000000)
(0000000)
(0000000)

(0000000)

(0000000)

(0000000)

(0000000)

(0000000)

.
\

o000 Q00O
o000 o000
OO0 OO0
(eYeleYe®) QOO0 QOO0 (CO00) (OO0 (0000
1

I I I I I I
Nobel committee awards who advanced

Multi-head self-attention

[Vaswani et al. 2017]

OO00O00O OO00O00O OO00O00O eo]o]o]e) @OfO@ (OO?@ (OOfOO)
Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
| | |
[STalels 0000 0000 0000 /%cr)ooo) OCO0O) ([OOO)
—~(@) —@] —~O] —@] —(@] —~@) —~O)
5 +213I8| =®l1218| =212lS| sel8l8| selel8! sel8ls eelols
optics (@]|& @) OO.O OO.O OOOO O0.0 OOOO .OO.
< iSlslSl8] [2[8ISIS] [S[S]I8(S] [S(2ISS] [SS(SS] [SIsISle] [Sl8]ele
wno
srickiand |O|S[S|2| [@3[S[S] |2]8ISIe] 12[8I812] |olalSle] [@I8|S|e| [2|8]8|S
awards |O[318[9) |10|8]319) |9[al819) [9[3|8IS) |o|a|gle) (e|le|3S) 53I8IS)
committee |O | @ = Ol OleM—= Oleo= OloM~—= OloM= OloM=
A Nobel 8;4 LOJ_J Qg_a .Ju 8;4 8;4 \g_;
Q OO0O0O eo]o]o]e) OOO00O OOO0O OOO0O OO00O00O OO00O0O
K eo]o]eo]e) OO00O00O (eo]o]o]®) OO00O0O (eo]o]o]®) OO00O0O OOO00O
i V4 OO0O00O OO0O0O0O OOO00O OO000O OO0OO0O OO0O0O0O OO0O00O
Layer QOO0 ([©O0O) ©OO0Y @©OO0Y ([©OO0O) ©O0Y OOV
p+1 | ! | | | | |
Nobel committee awards who advanced

[Vaswani et al. 2017]

Multi-head self-attention

LayerJ (Multi-head self-attention + feed forward j
1 1 1 1 1 1 1 1
Laye_r p (Multi-head self-attention + feed forward j
| 1 1 1 1 1 1 1

Layer 1 ((- o= 11 Multichead self-attention +feed forward =1 =1 =1 = D

1 1 1 1 1 1
©CooOD) @000 ©oOoYH ©CO09) ©BOoY ©OoYH
Nobel committee awards Who advanced

Output
Probabilities

L

Softmax)

1

Position embeddings are added to each word embedding. j_\

Otherwise, since we have no recurrence, our model is
unaware of the position of a word in the sequence!

o

| ~
Add & Norm)

Feed
Forward

A

Add & Norm)

Multi-Head
Attention

—

—

———

| Add & Norm J=—

Multi-Head
Attention

2 > 2

[Add & Norm Jee

Masked
Multi-Head
Attention

At 2

J

Positional
Encoding

Input
Embedding

I

Inputs

.

At 2

)

—
J

o0

Output
Embedding

]

Outputs
(shifted right)

Positional
Encoding

Output
Probabilities

[Softmax)

t
Residual connections, which mean that we add the input

)
to a particular block to its output, help improve gradient
flow
———
1 ~ | Add & Norm <
Add & Norm } Multi-Head
Feed Attention
Forward

7 7 7 N>
F

[Add & Norm Jee

N> | —~(Adda Norm)

Masked
Multi-Head Multi-Head
Attention Attention
u _ . e
Positional Positional
Encodi ¥ @_® i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Output
Probabilities

[Softmax)

r e 1
A feed-forward layer on top of the attention- weighted

_\
averaged value vectors allows us to add more parameters /
nonlinearity
———
- 1 ~ (Add & Norm J=—
(e Multi-Head
Feed Attention
Forward 7 7 P N x<
| l J—~
Add & N
N> | —{(Add & Norm) Mas'ke(;rm
Multi-Head Multi-Head
Attention Attention
—_— 7\ ol
Positional L Positional
Encoding ®_€) G9—® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Output
Probabilities

I Softmax

)

We stack as many of these Transformer blocks on 1

top of each other as we can (bigger models are

generally better given enough data!)

s

I ~
~—>| Add & Norm

Feed
Forward
~—
Nx | S{Add & Norm)
Multi—.Head
Attention
At
O —— .
Positional ®_€9
Encoding

Input
Embedding

I

Inputs

Linear]
4
1)
Add & Norm J=—~
Feed
Forward
| Add & Norm J=—
Multi-Head
Attention
2 2 7 N>
[Add & Norm Jee
Masked
Multi-Head
Attention
At »
\ Vo—
G9—® Positional
Encoding

Output
Embedding

]

Outputs
(shifted right)

Moving onto the decoder, which takes

in English sequences that have been
shifted to the right (e.g., <START>
schools opened their)

Positional ®_€9
Encoding

Output
Probabilities

(Softfmax)|
| Linear]

4

e 1
[Add & Norm J=—

s

Feed
Forwara

A
N——

~—>| Add & Norm

Multi-Head
Attention

—tr 2

~—

= J

1)
~—>| Add ¢ Norm]}

Feed
Forward

| T

| Add & Norm J=—~

Multi-Head
Attention

2 > 2

e —
J

Input
Embedding

I

Inputs

LAdd & Norm J<—

Masked
Multi-Head
Attention

At 2

Output
Embedding

]

Outputs
(shifted right)

G9—® Positional
Encoding

We first have an instance of masked

self attention. Since the decoder is

responsible for predicting the English
words, we need to apply masking as

0.0 A

2.5 A1

5.0 A4

7.5 A

10.0 A

12.5 A

15.0 A

17.5 A

we saw before.

s

o

1)
~—>| Add ¢ Norm]}

Feed
Forwara

N——

A

~—>| Add & Norm

Multi-Head
Attention

N—

—tr 2

Output
Probabilities

L

Softmax)

1

Linear]

4

f | |
[Add & Norm J=—

Feed
Forward

|

| Add & Norm J=—~

Multi-Head
Attention

2 > 2

LAdd & Norm J<—

Masked
Multi-Head
Attention

J

° Positional

Encoding

Input
Embedding

I

Inputs

\

At 2

e —
J

o0

Output
Embedding

]

Outputs
(shifted right)

Positional
Encoding

Output

We first have an instance of masked Probabilities
self attention. Since the decoder is (Soﬁfmax) Why don’t we do masked
responsible for predicting the English —= 1] self-attention in the
. inear
words, we need to apply maskingas) ~ encoder?
we saw before. AT & O |y
Feed
Forward
(J—~
0.0 g 1 N\ Add & Norm
a5] —{Add ¢ Norm } Mult-Head
5.0 - Feec Attention
45 | Forwara P P) P N x
10.0 - _‘k F
' LAdd & Norm J=—
12.5 1 —| Add & Norm) I\/Ias.ked
1501 Multi-Head Multi-Head
17.5 Attention Attention
[IJ E:: 1I0 1I5 _“_‘ _“_‘
_ J g —JJ
Positional Positional
Encoding ®_€9 69_® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Now, we have cross attention, which
connects the decoder to the encoder by

enabling it to attend over the
final hidden states.

encoder’s

—

s

—

1)
Add & Norm)

Feed
Forward

N——

A

—

Add & Norm)

Multi-Head
Attention

o

~—

—tr 2

~

Output
Probabilities

L

Softmax)

1

Linear]

4

e 1
[Add & Norm J=—

Feed
Forward

| T

([Add & Norm J=—~

Multi-Head
Attention

2 > 2

J

Positional
Encoding

Input
Embedding

I

Inputs

LAdd & Norm J<—

Masked
Multi-Head
Attention

\

At 2

e —
J

o0

Output
Embedding

]

Outputs
(shifted right)

Positional
Encoding

Output
Probabilities

After stacking a bunch of these

decoder blocks, we finally have our (SOT‘""" J
familiar Softmax layer to predict C toor
the next English word ((AddaNom)= |
Feed
Forward
|
e 1 ~\ | Add & Norm J—
—{ Add & Norm J Multi-Head
Feed Attention
Forward P P P N <
3 ‘ s
N | Add & Norm J
—| Add & Norm) T
Multi-Head Multi-Head
Attention Attention
At 2 At £
_ S \)
Positional L Positional
Encoding ®_€> G9—® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

Positional encoding

L [|

[[1]

[1 |
etudiant

Intuitive example

O: O 0O 8 : O 0O
1 : O 0 1 9 : O 0 1
2 : O 10 10 : O 10
3 : O 1 1 11 : O 1 1
4 : 1 0 O 12 : 1 OO0
5 : 1 0 1 13 : 1 0 1
6 : 110 14 : 110
7 : 11 1 15 : 11 1

https://kazemnejad.com/blog/transformer_architecture positional_encoding/

Transformer positional encoding

pOS
100002i/dmodd

PE (p0s,2i) = sin()

poSs

00002 Aot ?

PE(pos,2i+1) = cos(

Positional encoding is a 512d vector

| = a particular dimension of this vector
pos = dimension of the word

d_model =512

What does this look like?

(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture positional_encoding/

More on new-Transformer

What would we like to fix about the Transformer?

T I T
Quadratic compute in self-attention (today): 6007 e Attention
_ _ _ _ 500 4- BN Feed-forward
« Computing all pairs of interactions means our
computation grows quadratically with the _ 400
2 300
sequence length!
« For recurrent models, it only grew linearly! 200
100
D -

0 5000 10000 15000

Sequence length

Quadratic computation as a function of sequence length

One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

« However, its total number of operations grows as 0(n?d), where n is the
sequence length, and d is the dimensionality.

Need to compute all
XQ = XOKTXT pairs of interactions!
2
KT XT c Rnxn O(Tl d)

* Think of d as around 1, 000 (though for large language models it’s much larger!).
* So, for a single (shortish) sentence, n < 30; n? < 900.

* In practice, we set a bound like n = 512.

* But what if we’d liken > 50, 0007? For example, to work on long documents?

Work on improving on gquadratic self-attention cost

Considerable recent work has gone into the question, Can we build models
like Transformers without paying the all-pairs self-attention cost?
For example, Linformer [Wang et al., 2020]

Key Idea:
- Linformer introduces a novel 120 T tf":mme" ::fg;j
—&— Linformer, K=
concept called "compressed" = —#— Linformer, k=512
or "linearized" self-attention. wso b~~~ Linformer, k=256
. £ —-= Linformer, k=128
- Instead of computing — Qg = -
C: 1- uct
attention scores for all pairs of Atention S o]
. . A c20
input elements, it employs L 0
linear projections to reduce [Ez) m;fm] %o I
P
the complexity. = S ' - L —l L
P Y = [me]' [m]‘ — o INTmomzssms-ctoo————-momImITInITTTS
V v/ Y/ 512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1

' ¢ 4 Sequence length / batch size

Example: Longformer / Big Bird

Key idea: use sparse attention patterns!

T
I 1

1 T 1
1 o 1

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

(Beltagy et al., 2020): Longformer: The Long-Document Transformer

DOOODmmO] I [T 11
DD I—IE,\jD o | LIT1
O 1] O
=S s -
O 1] 1 O
- &° i ,
] 1T O
- |- - 1] H O |
(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

(Zaheer et al., 2021): Big Bird: Transformers for Longer

Do we even need to remove the quadratic cost of attention?

« As Transformers Scale Up: When Transformers are scaled to larger sizes, an increasingly
significant portion of computational resources is allocated to tasks outside of the self-attention
mechanism, despite its quadratic computational cost.

» Current Practice: In practice, nearly all large Transformer-based language models continue to
rely on the traditional quadratic-cost attention mechanism that has been presented.

« Challenges with Cost-Efficiency: Alternative, more computationally efficient methods often do
not perform as effectively when applied at a large scale.

« Exploring Cheaper Alternatives: Is there value in exploring cost-efficient alternatives to self-
attention, or could we unlock the potential for significantly improved models with much longer

contextual information (e.g., >100k tokens) if we find the right approach?

Do Transformer Modifications Transfer?

performance."

Model
Voorila Trasormmes
el
Sau

B

L
GetGLA
oL
Seld
SwiGLY
LA
Sigaml
Sehpiin
NS Xorm

26 lagwen, de = 1036, M = &

208 - ¥
MR -1y
A4 -2

nbitagn
Factabr ondy binck sharisg
Thvoodder audy blork eharing
Farvarion] Finduablong

Factimimed & shared reshact

Snrebentere |z e o)
e

Syrateemises (Tactortored|
Syt aiser [rendess
Suvatommiaen [rnndees pdom)
Syvbentert [ressdens ive

Setth Trassbenur
"
Wrghtral Tramsborraes

Toasmborrare

et by o

Parsie

mu
mu
mu
mM
my
mu

mm
mu
mu
mu

e
mu
mu
mum
@
wr
=

oy
ey
mM
mu

s
s
1ioesr
mu
™M
i

Step/s Borly b Final bss SGLUE

10 TN

slE 1AM =
™m

wa
an

wo

o
113
12

o
1704

WebQ

no

WMY Bl

we

ma
=l

maw

'Surprisingly, we find that most modifications do not meaningfully improve

Do Transformer Modifications Transfer Across Implementations
and Applications?

Sharan Narang* Hyung Won Chung Yi Tay William Fedus

Thibault Fevry! = Michael Matena! Karishma Malkan! Noah Fiedel

Noam Shazeer Zhenzhong Lan' Yanqgi Zhou Wei Li
Nan Ding Jake Marcus Adam Roberts Colin Raffelf

Vision Transformer (VIT)

Vision Transformer (ViT) Transformer Encoder

i
1) A
I L x e Accuracy vs. MACs vs. Model size
MLP
I .
Head ‘TZT—VIT
:] 1 MLP 82 . ViT
I ;\3 Is)
Transformer Encoder : = i
1 - ResNet
! o ‘é 80 -
Patch + Position __ . . .' . . Multi-Head 3: .

*Emf’e‘fd"“g I Attention ~ 79 -

[cli);::]li‘::lﬁtgsing [Linear Projection of Flattened Patches I §‘
1

a1 IIIIIIIMI, nl @

WEnm '..WMWWE I i , 20M 50M 200M

] = 7 T T T T T T 1

Al s P ! E‘l;‘;gggfd 0 10 20 30 40 50 60 70

1 S

MACs (x109)

(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Music Transformer

i

= = |
:-_— __—_—_ T TV —._——— T
—— nEE I T e
— — . s e E— — NS — — A .- -mrme-
[T T TTTL T - SRRMIEIETOC B i S e —
i s S e i e i T R R —E N P T
-_- o — J——————_2 -_—-— e e
iy S Rl = == = e

https://magenta.tensorflow.org/music-transformer

(Huang et al., 2018): Music Transformer: Generating Music with Long-Term Structure

Why transformer

Why Pretraining + Transformers

* 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

Credits from 718, Recurrent Al

Why Pretraining + Transformers

» 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

Why Pretraining + Transformers

« 3. Because transformers use nothing but attention?

So what?

Why Pretraining + Transformers

4. Because transformers learns contextualised word embeddings?

RNN also can learn contextualised word embeddings

Why Pretraining + Transformers

s Capacity: The model has sufficient expressive capabilities

 Optimization: Can optimize and obtain better solutions in a huge
expression space

* Generalization: Better solutions can generalize on test data

“Exploring the Limits of Language Modeling
Jozefowicz et al 2016

LSTM-8192-1024, 1.8 billion params, ppl 30.6
LSTM-8192-2048, 3.3 billion params, ppl 32.2

Dai, Yang et al 2016
Transformer-XL Base, 0.46 billion params, ppl 23.5
Transformer-XL Large, 0.8 billion params, ppl 21.8

ppl=perplexity, the lower the better

Scalability: Transformers scale much better with more parameters

Deep understanding of transformer

What if

v" removing SAN

v" removing FFN

v' removing PE

v' and many others?

Without FFN, pure SAN

Layer 1 Layer 2 Layer L
4 Skip connection N (Skip connection) (Skip connection)
MEve
3] L3 3]
2 2 2
o 9] 3]
SA» g a a
o © e
3 @ 8
- 5 3 5 (O
Q Q Q
= = (=
Q 9 9
(&) Q [S]
SAy
- A R _
we - path (2, —, ..., 1) path (H, 2, ..., 2)

Y Dong, JB Cordonnier, A Loukas. Attention is not all you need: Pure attention loses rank
doubly exponentially with depth. https://browse.arxiv.org/pdf/2103.03404.pdf

Without SAN, pure FNN

. A
Mixer Layer |

Skip-connections

l Channels l
r—

= Patches

— =] 2 —(MLP1 }—p

— Z > = “g’ L ("MLP 1 }—» /T\\

— 5> g \L#5 ——(MLP1)}

— E‘ —> . O L (MLP1 }—p

_h-_c

At least it works for computer vision.

'

(o)L
MLP 2
MLP 2
MLP 2 }—
MLP 2
MLP 2 -

llya Tolstikhin et.al MLP-Mixer: An all-MLP Architecture for Vision https://browse.arxiv.org/pdf/2105.01601.pdf

Nx

Replace SAN with fourier

Qutput
t

Output Projection

i

Dense

*

I

Add & Normalize

Feed Forward

¥

Add & Normalize

I

JEND S B S

Fourier

L SER — L NI N— — —

[]

1

Embeddings

k[Word 1+[Position]+[Type]

Input

> Highlight the potential of linear units as a
drop-in replacement for the attention
mechanism in text classification tasks.

% FNet will be effective as a lightweight

James Lee-Thorp, Joshua Ainslie, llya Eckstein, Santiago Ontanon .

FNet: Mixing Tokens with Fourier Transforms. NAACL 2022

https://aclanthology.org/people/j/james-lee-thorp/
https://aclanthology.org/people/j/joshua-ainslie/
https://aclanthology.org/people/i/ilya-eckstein/
https://aclanthology.org/people/s/santiago-ontanon/
https://aclanthology.org/2022.naacl-main.319.pdf

How to place FFN and SAN

sfsfsfsfsfsfsfsfsfsfsfsfsfsf

(a) Interleaved Transformer

sssssssfsfsfsfsfsfsfsfffffff

(b) Sandwich Transformer

Figure 1: A transformer model (a) is composed of inter-
leaved self-attention (green) and feedforward (purple)
sublayers. Our sandwich transformer (b), a reordering
of the transformer sublayers, performs better on lan-
guage modeling. Input flows from left to right.

Model

PPL

fffsfsssfisffsfsffsffsssssffssffs

sssssssffsffsfsfsffffsfffsfssffs
sffsfsffsfsssffssfssssssfffffffs

sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf
sfsfsfsfsfsfsfsfsfsfsfsfsfsfsfsf

20.74
20.64
20.33
20.27
19.98
19.92
19.69
19.54
19.13
19.08
18.90
18.83
18.83
18.77
18.68
18.64
18.61
18.60
18.55
18.54
18.49
18.38
18.28
18.25
18.19

Ofir Press, Noah A. Smith, Omer Levy. Improving Transformer Models by Reordering their Sublayers.

https://browse.arxiv.org/pdf/1911.03864.pdf

What will happen if the position embedding model is removed?

Table 3: Experiments on GLUE. The evaluation metrics are following the official GLUE benchmark
(Wang et al., 2018). The best performance of each task 1s bold.

single sentence sentence pair
PEs CoLA SST-2 MNLI MRPC QNLI QQP RTE STS-B WNLI

acc acc acc F1 acc F1 acce spear. cor. acc mean =+ std
BERT without PE 39.0 86.5 80.1 86.2 83.7 86.5 63.0 874 33.8 76.6 £ 0.41
fully learnable (BERT-style) APE 60.2 93.0 84.8 89.4 88.7 87.8 65.1 88.6 37.5 82.2 +0.30
fixed sin. APE 57.1 92.6 84.3 89.0 88.1 87.5 584 86.9 45.1 80.5 £ 0.71
learnable sin. APE 56.0 92.8 84.8 88.7 88.5 87.7 59.1 87.0 40.8 80.6 + 0.29
fully-learnable RPE 58.9 92.6 84.9 90.5 88.9 88.1 60.8 88.6 50.4 81.7 £ 0.31
fixed sin. RPE 60.4 92.2 84.8 89.5 88.8 88.0 62.9 88.1 45.1 81.8 +0.53
learnable sin. RPE 60.3 92.6 85.2 90.3 89.1 88.1 63.5 88.3 49.9 82.2 £ 040
fully learnable APE + fully-learnable RPE 59.8 92.8 85.1 89.6 88.6 87.8 62.5 88.3 51.5 81.8 £0.17
fully learnable APE + fixed sin. RPE 59.2 924 84.8 89.9 88.8 87.9 61.0 88.3 48.2 81.5 4+ 0.20
fully learnable APE+ learnable sin. RPE 61.1 92.8 85.2 90.5 89.5 87.9 65.1 88.2 49.6 825+ 044
learnable sin. APE + fully-learnable RPE 57.2 92.7 84.8 88.9 88.5 87.8 58.6 88.0 51.3 80.8 £+ 0.44
learnable sin. APE + fixed sin. RPE 57.6 92.6 84.5 88.8 88.6 87.6 63.1 874 48.7 81.3+043
learnable sin. APE + learnable sin. RPE 57.7 92.7 85.0 89.6 88.7 87.8 62.3 87.5 50.1 81.4 £+ 0.33

Benyou Wangq, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, Jakob Grue Simonsen. On
Position Embeddings in BERT. https://openreview.net/pdf?id=onxoVA9FxMw

https://openreview.net/profile?id=~Benyou_Wang2
https://openreview.net/profile?id=~Lifeng_Shang1
https://openreview.net/profile?id=~Christina_Lioma1
https://openreview.net/profile?id=~Xin_Jiang1
https://openreview.net/profile?id=~Hao_Yang7
https://openreview.net/profile?id=~Qun_Liu1
https://openreview.net/profile?id=~Jakob_Grue_Simonsen1

Improvements for Norm

DeepNet - 1000 layer Transformers

A new normalization function (DEEPNORM) is introduced
[replacing it is not Layer Norm! Instead, modify it similarly to:

layernorm (x + f(x)) ---> layernorm(x*alpha + f(x)).

The proposed method combines the advantages of both schools,
namely the good performance of Post-LN and the stable training of
Pre-LN, making DEEPNORM the preferred alternative.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, Furu Wei. DeepNet: Scaling
Transformers to 1,000 Layers. https://browse.arxiv.org/pdf/2203.00555. pdf

https://browse.arxiv.org/pdf/2203.00555.pdf

Is the model deeper or wider?
Go Wider Instead of Deeper

Recurrence

_——— e — e e —

it Transformer 7 \

Block 3
+
//‘

MoE

1‘ \

\
[LayerNorm"°¢) E
A

\

3. ||
=

\ S
+ \
\\ [Router J
\

[Multi-Head Attention] \ ’_f_\

T l‘lI s e e h']]'iﬂ e e e h'“
[LayerNorm ™ /

~_ _ e ~

A

% WideNet first compresses trainable parameters along with depth by parameter-sharing across transformer blocks
% [Each expert requires enough tokens to train.

Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, Yang You. Go Wider Instead of Deeper. https://arxiv.org/abs/2107.11817

https://arxiv.org/abs/2107.11817
https://arxiv.org/search/cs?searchtype=author&query=Xue,+F
https://arxiv.org/search/cs?searchtype=author&query=Shi,+Z
https://arxiv.org/search/cs?searchtype=author&query=Wei,+F
https://arxiv.org/search/cs?searchtype=author&query=Lou,+Y
https://arxiv.org/search/cs?searchtype=author&query=Liu,+Y
https://arxiv.org/search/cs?searchtype=author&query=You,+Y

Scaling law?

Scaling Law for Neural Language Models
Performance depends strongly on scale! We keep getting better performance as we

scale the model, data, and compute up!

Scaling Laws for Neural Language Models

Jared Kaplan *
Johns Hopkins University, OpenAl
jaredk@jhu.edu

Tom Henighan Tom B. Brown
OpenAl OpenAl
henighan@openai.com tom@openai . com bc!
Scott Gray Alec Radford
OpenAl OpenAl
scott@openai.com alec@openai.com jeff

Sam McCandlish*

Test Loss

OpenAl
4.2
—— L =(D/5.4+1013)70.095 | 5.6 —— L=(N/8,8-10'3)70:076
5 3.9 4.8
3.6 40
4
3.3 3.2
3
3.0
2.4
L = (Cmin/2.3 - 108)~0-050
2 - ; ! . 2.7 . . T 1 v
fo® 107 10 1073% 107! 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Emergent abilities of large language models (TMLR 22).

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D.

Hashimoto, O. Vinyals, P. Liang, J. Dean, & W. Fedus.

Metzler, E. Chi, T.

Scaling laws

OpenAl codebase next word prediction

Bits per word

6.0

5.0

4.0

3.0

2.0

1.0

® Observed
Prediction
gpt-4
®
=)
[]
T T T T T 1
100p 10n 17 100u 0.01 1
Compute

GPT-4 Technical Report, OpenAl (2023)

https://arxiv.org/abs/2303.08774

Challenge to scaling law: Chinchilla’s Death

-10B

+2.5B

-500M
-250M

-75M

L

1017 1018 1019 1020 1021 1022
FLOPS

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Smaller models eventually reach the
limit of their capacity for knowledge, and
their learning slows, while that of a
larger model, with a larger capacity, will
overtake them and reach better
performance past a given amount of
training time.

While estimating how to get the best
bang during training, OpenAl &
DeepMind attempted to draw the Pareto
frontier.

Challenge to scaling law: Chinchilla’s Death

Can Chinchillas picture a Llama’s sights?

2.2
2.1 1

A 2.0

=
©

Training lo
H
(0]

=
o 0~

LLaMA 7B

LLaMA 13B
LLaMA 33B
LLaMA 65B

=
(&)

0

200 400 600 800 1000 1200 1400

Billion of tokens

7
L <4

Each curve first plummets in a power law,
and then seemingly enters a nearly-linear
decrease in loss (corresponding to a fairly
constant rate of knowledge acquisition).

At the very tip of the curve, they all break this
line by flattening slightly.

This should consider the cosine LR schedule.

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Challenge to scaling law: Chinchilla’s Death

Can Chinchillas picture a Llama’s sights?

Training speed (lower is better)

Let’s picture instead a race:
All those models start at the
same time, and we want to
know which one crosses the
finish line first.

22 T T T

In other words, when
throwing a fixed amount of
compute at the training, who
. | | l | learns the most in that time?

0 200000 400000 600000 800000 1x10°

Training loss (cross-entropy)

GPFU-hours ()

the 7B enters a near-linear regime, with a steep downward trend, and seems

on its way to maybe overpass the 13B again?
https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Emergent ability ?

Emergent properties in LLMs:
Some ability of LM is not present in smaller models but is present in larger models

Emergent Capability: Few-shot prompting

Input

—t— LaMDA —e— GPT-3 == Gopher

Output (A) Mod. arithmetic (B) IPA transliterate (C) Word unseramble

&0 50 | 50
positive. i o] :

Review: This movie sucks.
Sentiment: negative.

de— Chinchills == PaLM == - Random

Language

(D) Persian QA

w
=1

Review: | love this movie.

o0 _ & 10 Eao
mOdel 0: 30 E 5|) d a0
Sentiment: £ . 2 g £
Z 2 3 g
= 10 = 10| 3 10 10
= =
o [} oF o
. Lolﬁ]Um) lo‘l? iu?d lnli‘ I{,?Ii 10,'! Iuﬂl lulh la‘)ﬂl 1022 Lo‘)l IU”‘ lo'hl Iﬂ?? luﬂ'-l
> A few-shot prompted task is
. . {E) TruthfulQA (F) Grounded mappings (G) Multi-task NLU (H) Word in context
emergent if it achieves random 2 iy B |
. (1] . &0 . i} . 6 |
accuracy for small models and above- e E ra e
] g 30 E 30 g 30 |
random accuracy for large models. 4% Ew g i
L i - X L) i . of " - op " .
T ECS [S 1 R 109 0% o 109 108 0 1030 109 10

Model scale (training FLOPs)

https://docs.google.com/presentation/d/1lyzbmYB5E7G8IY2-KzhmArmPYwwl707CUST1xRZDUulY/edit?resourcekey=0-6_TnUMoK WCk_FN2BiPxmbwi#slide=id.g1fc34b3ac18_0_27

Emergent capabilities may be a consequence of metric choice

. = ° R
Emergent Abilities g No Emergent Abilities
o
e
L o
C L0 = Target Str Len g E Target Str Len
-5 I 2 —— 5
08 " / = Rl
i =
06 Nonlinearly Linearly E S
5 score o score g
S04 10° 10% 101 =
< LLm outputs Model Parameters LLM outputs ; -3
=2
0.2 E
Z 4
0.0
101 10° 1010 101
B) Model Parameters
p(single token correct) = exp l’\ — Lok l_\"\)
1.0
D w —~ F 0.0 - Num. Choices
% 08 -2
goe 5 0.6 w0
G e o
sos6 Il S
2 £oa 4 -04
204 b @
£ . . Boz . " _os
I Discontinuously Continuously .
Num. Choices score 0.0 Score
00 -2 LLM outputs 100 100 101 LLM outputs -0
Model Parameters
10° 10 101 10° 101

3 100
Model Parameters Model Parameters

It seems that emergent ability of a model only occurs if the measure of per-token error rate of any
model is scaled non-linearly or discontinuously.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are Emergent Abilities of Large Language Models a Mirage? https://browse.arxiv.org/pdf/2304.15004.pdf

Assignment 1: Using LLM for prompt engineering

See updates in our BB system, WeChat and Emails.
It will be released before the next lecture.

Tutorial and the homework
explanation will be In the next
lecture (Oct. 13t)

Acknowledgement

* Princeton COS 484: Natural Language Processing. Contextualized Word Embeddings. Fall 2019

* (CS447: Natural Language Processing. Language Models. http://courses.engr.illinois.edu/cs447
» http://cs231n.stanford.edu/

» https://medium.com/@agautam.karmakar/summary-seq2seq-model-using-convolutional-neural-
network-b1eb100fb4c4

« Transformers and sequence- to-sequence learning. CS 685, Fall 2021. Mohit lyyer. College of
Information and Computer Sciences. University of Massachusetts Amherst.
https://people.cs.umass.edu/~miyyer/cs685 f21/slides/05-transformers.pdf

http://courses.engr.illinois.edu/cs447
http://cs231n.stanford.edu/
https://medium.com/@gautam.karmakar/summary-seq2seq-model-using-convolutional-neural-network-b1eb100fb4c4

Challenge to scaling law: Chinchilla’s Death

Can Chinchillas picture a Llama’s sights?

2.2
— LLaMA 7B
1.00 2.14 LLaMA 138
) 2.0 —— LLaMA 33B
0.75 4) —— LLaMA 65B
n 1.9 1
0.50 A 11.84
]
1171
0.25
1.6
. 151 | . . | | | |
0.00 . : | . . 0 200 400 600 800 1000 1200 1400

0 200 400 e00 800 1000 Billion of tokens

The slowdown in learning is an artefact of cosine schedule. The model does not
necessarily cease to have the capacity to learn at the same near-linear rate!

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

