
CSC6203/CIE6021:

Large Language Model

Lecture 3: Architecture engineering and scaling law:

Transformer and beyond

Winter 2023
Benyou Wang

School of Data Science

To recap…

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

GPT-3 still acts in this way but the model is implemented as a very large neural network of

175-billion parameters!

Language models:Broad Sense

❖ Decoder-only models (GPT-x models)

❖ Encoder-only models (BERT, RoBERTa, ELECTRA)

❖ Encoder-decoder models (T5, BART)
The latter two usually involve a

different pre-training objective.

Language model using neural networks

我 思 故 我

在

input：

output：

Back-box neural networks：
GPT-3/ChatGPT/GPT4 have
175B+ parameters
Humans have 100B+
neurons

Today’s Lecture– Big Picture

Which neural networks should be used for
LLM?

✓ Multilayer Perceptron (MLP)

✓ Convolutional neural network

✓ Recurrent neural network

✓ Transformer
Recurrent NNs

Transformer
Convolutional NNs

MLP

MLP

Which Transformer is so powerful?

Today’s lecture
• MLP

+: Strongest inductive bias: if all words are concatenated

+: Weakest inductive bias: if all words are averaged

- : The interaction at the token-level is too weak

• CNN & RNN

+: The interaction at the token-level is slightly better.

CNN: Bringing the global token-level interaction to the window-level

- : Make simplifications, its global dependencies are limited

RNN: An ideal method for processing token sequences

- : Its recursive nature has the problem of disaster forgetting.

• Transformer

+: Achieve global dependence at the token-level by decoupling token-level

interaction and feature-level abstraction into two components, in SAN and FNN.

• Scaling law and emergent ability

Semantic Abstraction
and Semantic composition

What is Semantic abstraction?

Pixel -> texture -> region -> object -> relation -> semantics->

Neural network layers

Neural network layers

Neural network layers

Neural network layers

Input: I think therefore I

output: am

…...

Higher-level layers deal with higher-degree abstraction

Neural network layers

What is Semantic composition?

Semantic composition is the task of understanding the meaning of text by composing

the meanings of the individual words in the text.

Ivory (象牙塔)tower (塔)Ivory (象牙)

It involves token interaction

Semantic composition vs. Semantic Abstraction
Token level: I think therefore I am F

e
a
tu

re
 le

v
e
l: w

o
rd

 v
e
c
to

r

Composition w/ token interaction Non-linear Abstraction w/t token interaction

How to combine composition and Abstraction

A flatten solution: MLP (e.g. NNLM)

Complexity: O(D𝟐𝐋𝟐)

Yoshua Bengio et.al A Neural Probabilistic Language Model. NIPS 2003

How to combine composition and Abstraction

A variant of MLP (e.g. CBoW)

Complexity: O(D𝟐)

Mean pooling (token

interaction) in the first layer

Remove token interaction in

deeper layers

T Mikolov et.al Efficient Estimation of Word Representations in Vector Space. https://arxiv.org/abs/1301.3781

Inductive bias of composition

Definition: The inductive bias (a.k.a learning bias) of a learning algorithm is the set of assumptions that a

machine learning algorithm makes about the relationship between input variables (features) and output

variables (labels) based on the training data.

How we believe tokens should be interacted as the

inductive bias, also considering semantic abstraction

simultaneously?

Inductive bias of composition

CNN: local composition within a window

RNN: recurrently compose tokens from left to right or right to left.

Issues of CNN and RNN

CNN: local composition：
How to make long-term token interaction that is longer than the

window size?

RNN: recurrent composition
What if we forget tokens checked 10 timestamp ago?

How can we freely composition tokens without
constraints (weaker inductive bias) ?

The modern deep learning is just using weaker inductive biases and make more data-

driven instead of prior-driven.

Make each token to see every other token

Efficiency: Decompose abstraction and composition

SAN: composition

FFN: abstraction

…...

SAN: composition

FFN: abstraction

Token level: I think therefore I am

F
e
a
tu

re
 le

v
e
l: w

o
rd

 v
e
c
to

r

Composition w/ token interaction
SAN

FFN

Today’s lecture
• MLP

+: Strongest inductive bias: if all words are concatenated

+: Weakest inductive bias: if all words are averaged

- : The interaction at the token-level is too weak

• CNN & RNN

+: The interaction at the token-level is slightly better.

CNN: Bringing the global token-level interaction to the window-level

- : Make simplifications, its global dependencies are limited

RNN: An ideal method for processing token sequences

- : Its recursive nature has the problem of disaster forgetting.

• Transformer

+: Achieve global dependence at the token-level by decoupling token-level

interaction and feature-level abstraction into two components, in SAN and FNN.

• Scaling law and emergent ability

Multilayer Perceptron (MLP)

• Introduction of MLP

• Forward Propagation

• Backward Propagation

• Code Implementation

Multilayer Perceptron (MLP)

Definition: The Multilayer Perceptron (MLP) is a type of artificial neural network

(ANN) that consists of multiple layers of interconnected artificial neurons or

perceptrons.

Fully-connected (FC) layers:

All the units from one layer are

fully connected to every unit of

the next layer.

Feed-forward NNs

• The units are connected with no cycles
• The outputs from units in each layer are passed to units in the next higher layer.

No outputs are passed back to lower layers

Feedforward neural language models

https://awards.acm.org/about/2018-turing

(Bengio et al., 2003)

Key idea: Instead of estimating raw probabilities, let’s use a

neural network to fit the probabilistic distribution of language!

P(w ∣ I am a good) P(w ∣ I am a great)

Key ingredient: word embeddings e(good) ≈ e(great)

Hope: this would give us similar distributions for similar contexts!

Feedforward neural language models

(Bengio et al., 2003)

Backpropagation
Definition:
Backpropagation, short for "backward propagation of errors," is a supervised learning algorithm used

for training artificial neural networks, including deep learning models like Multilayer Perceptrons

(MLPs).

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Backpropagation: a simple example

Backpropagation: a simple example

Backpropagation: a simple example

Backpropagation: a simple example

Backpropagation: a simple example

Backpropagation: a simple example

Backpropagation: a simple example

Another example

Another example

Another example

Modularized implementation: forward / backward API

PyTorch sigmoid layer

Forward actually defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp#L33

Common Challenges in Backward Propagation

• Vanishing Gradients

• Exploding Gradient

• Overfitting

• Local Minima

• Gradient Descent Variants

• Training Time

• Poor Initialization

Summary:

- Backward propagration is a critical but challenging step in training neural networks

- Addressing these issues requires a combination of architectural choices,

optimization techniques, and regularization methods.

if you’re using sigmoids or tanh non-linearities in your network and you

understand backpropagation you should always be nervous about making sure

that the initialization doesn’t cause them to be fully saturated.

Trap1: Vanishing gradients on sigmoids

.

If you understand backpropagation and your network has ReLUs, you’re always

nervous about dead ReLUs. These are neurons that never turn on for any example in

your entire training set and will remain permanently dead. Neurons can also die

during training, usually as a symptom of aggressive learning rates.

Trap2: Dying ReLUs

If you understand backpropagation and you’re using RNNs you are nervous about having

to do gradient clipping, or you prefer to use an LSTM.

Trap3: Exploding gradients in RNNs

Review: MLP
1. Breif introduction of MLP;

2. Forward propagation and backward propagation;

3. Common Challenges in Backward Propagation

Limitations of MLP:

1. Limited Spatial Invariance (vs. CNNs)

2. Sequential Information Handling (vs. RNNs)

3. Positional Encoding (vs. Transformers)

4. Attention Mechanism (vs. Transformers)

5. Hierarchical Feature Extraction (vs. CNNs and Transformers)

6. Parameter Efficiency (vs. Transformers)

7. Pre-training Efficiency (vs. Transformers)

8. Structured Input Bias (vs. CNNs and Transformers)

CNN&RNN • Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

Today’s lecture
• MLP

+: Strongest inductive bias: if all words are concated

+: Weakest inductive bias: if all words are averaged

- : The interaction at the token-level is too weak

• CNN & RNN

+: The interaction at the token-level is slightly better.

CNN: Bringing the global token-level interaction to the window-level

- : Make simplifications, its global dependencies are limited

RNN: An ideal method for processing token sequences

- : Its recursive nature has the problem of disaster forgetting.

• Transformer

+: Achieve global dependence at the token-level by decoupling token-level

interaction and feature-level abstraction into two components, in SAN and FNN.

• Scaling law and emergent ability

CNN&RNN

CNN
Convolutional Neural Network

• What is CNN?

• Motivation: Image Processing

• Key Components

- Convolutional Layers

- Pooling Layers

- Fully Connected Layers

• Hierarchical Feature Extraction

Key components: 1) convolution; 2) pooling; 3) multiple channels (feature maps)

Convolutional NNs in image classification

Convolutional NNs for text classification

(Kim 2014): Convolutional Neural Networks for Sentence Classification

https://browse.arxiv.org/pdf/1705.03122.pdf

Convolutional Sequence to Sequence Learning

❖ Encoder and decoder are simple blocks of convolution

operation followed by nonlinearity on fixed size of input.

❖ Introduce a concept of order preservation as a
positional vectors p = (p_1,p_2 …,p_m). In
combination of both input elements are represented as
E = (e_1=w_1+p_1, e_2=w_2+p_2,
….,e_m=w_m+p_m).

❖ Adds a linear mapping to project between the embedding
size f and the convolution outputs that are size 2d.

❖ Computes a distribution over the T possible next target
elements y_i+1 by transforming the top decoder output
h_i_l via a linear layer with weights and bias.

hidden states

input sequence (any

length)

…

…

…

Core idea: Apply the same

weights 𝑊 repeatedly

outputs

(optional)

RNN
Recurrent Neural Network

A Simple RNN Language Model

the

stu

dents

opene

d

thei

r

words / one-hot vectors

book

s laptop

s

word embeddings

a zo

o

output distribution

Note: this input sequence could be

much longer now!

hidden states

is the initial hidden state

RNN Language Models

the

stu

dents

opene

d

thei

r

book

s laptop

s

a zo

o

RNN Advantages:

• Can process any length input

• Computation for step t can (in

theory) use information from many

steps back

• Model size doesn’t increase for longer

input context

• Same weights applied on every

timestep, so there is symmetry in how

inputs are processed.
RNN Disadvantages:

• Recurrent computation is slow

• In practice, difficult to access

information from many steps

back

More on

these

later

Training an RNN Language Model

= negative log prob of “students”

Loss

Predicted prob dists

…

Corpus the students opened their exams …

Training an RNN Language Model

+ + + + …

=

…

Loss

Predicted prob dists

“Teacher forcing”

Corpus the students opened their exams …

Problems with RNNs: Vanishing and Exploding Gradients

Vanishing gradient intuition

?

chain rule!

Vanishing gradient intuition

chain rule!

Vanishing gradient intuition

chain rule!

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:

When these are small, the gradient

signal gets smaller and smaller as it

backpropagates further

Vanishing gradient intuition

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

learning rate

gradient

• This can cause bad updates: we take too large a step and reach a weird and bad

parameter configuration (with large loss)

• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network (then

you have to restart training from an earlier checkpoint)

Is vanishing/exploding gradient just an RNN problem?

For example:

• Residual connections aka “ResNet”

• Also known as skip-connections

• The identity connection

preserves information by default

• This makes deep networks much

easier to train

• No! It can be a problem for all neural architectures (including feed-forward and

convolutional), especially very deep ones.

• Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it

backpropagates

• Thus, lower layers are learned very slowly (i.e., are hard to train)

• Another solution: lots of new deep feedforward/convolutional architectures add more

direct connections (thus allowing the gradient to flow)

"Deep Residual Learning for Image Recognition", He et al, 2015.

https://arxiv.org/pdf/1512.03385.pdf

Transformer

• Encoder

• Decoder

• Self-attention

• Multi-head self-attention

• Positional Encoding

Transformer

• Encoder

• Decoder

• Self-attention

• Multi-head self-attention

• Positional Encoding

Today’s lecture
• MLP

+: Strongest inductive bias: if all words are concated

+: Weakest inductive bias: if all words are averaged

- : The interaction at the token-level is too weak

• CNN & RNN

+: The interaction at the token-level is slightly better.

CNN: Bringing the global token-level interaction to the window-level

- : Make simplifications, its global dependencies are limited

RNN: An ideal method for processing token sequences

- : Its recursive nature has the problem of disaster forgetting.

• Transformer

+: Achieve global dependence at the token-level by decoupling token-level

interaction and feature-level abstraction into two components, in SAN and FNN.

• Scaling law and emergent ability

encoder

encoder

decoder

Self-attention (in encoder)

who advanced optics

Q

K

V

Layer p

[Vaswani et al. 2017]

Nobel committee awards

Strickland

Q

K

V

Layer p

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

Self-attention (in encoder)

Q

K

V

Layer p

optics

advanced

who

Strickland awards

committee

Nobel

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards
Strickland

Self-attention (in encoder)

optics

advanced

who

Strickland

awards

committee

Nobel

Layer p

A

Q

K

V

[Vaswani et al. 2017]

who advanced opticsNobel committee awards

Strickland

Self-attention (in encoder)

Layer p

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

optics

advanced

who

Strickland

awards

committee

Nobel
A

Q

K

V

Self-attention (in encoder)

Layer p

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

optics

advanced

who

Strickland

awards

committee

NobelA

Q

K

V

Self-attention (in encoder)

Layer p

M

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

optics

advanced

who

Strickland

awards

committee
NobelA

Q

K

V

Self-attention (in encoder)

Layer p

M

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

optics

advanced

who

Strickland

awards

committee

NobelA

Q

K

V

Self-attention (in encoder)

Multi-head self-attention

Layer p

MH

M1

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

optics

advanced

who

Strickland

awards

committee

Nobel
A

Q

K

V

Layer p

MH

M1

[Vaswani et al. 2017]

who advanced

optics

Nobel committee awards

Strickland

optics

advanced

who

Strickland

awards

committee

Nobel

A

Q

K

V

Multi-head self-attention

MH

M1

Layer
p

p+1

Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward

who advanced

optics

Nobel committee awards

Strickland

[Vaswani et al. 2017]

optics

advanced

who

Strickland

awards

committee

Nobel
A

Q

K

V

Multi-head self-attention

who advanced

optics

Nobel committee awards

Strickland

[Vaswani et al. 2017]

p+1

Multi-head self-attention

Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

Who advanced

optics

Nobel committee awards

Strickland

[Vaswani et al. 2017]

Multi-head self-attention

Position embeddings are added to each word embedding.

Otherwise, since we have no recurrence, our model is

unaware of the position of a word in the sequence!

Residual connections, which mean that we add the input

to a particular block to its output, help improve gradient

flow

A feed-forward layer on top of the attention- weighted

averaged value vectors allows us to add more parameters /

nonlinearity

We stack as many of these Transformer blocks on

top of each other as we can (bigger models are

generally better given enough data!)

Moving onto the decoder, which takes

in English sequences that have been

shifted to the right (e.g., <START>

schools opened their)

We first have an instance of masked

self attention. Since the decoder is

responsible for predicting the English

words, we need to apply masking as

we saw before.

We first have an instance of masked

self attention. Since the decoder is

responsible for predicting the English

words, we need to apply masking as

we saw before.

Why don’t we do masked

self-attention in the

encoder?

Now, we have cross attention, which

connects the decoder to the encoder by

enabling it to attend over the encoder’s

final hidden states.

After stacking a bunch of these

decoder blocks, we finally have our

familiar Softmax layer to predict

the next English word

Positional encoding

Intuitive example

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer positional encoding

Positional encoding is a 512d vector

i = a particular dimension of this vector

pos = dimension of the word

d_model = 512

What does this look like?
(each row is the pos. emb. of a 50-word sentence)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

More on new-Transformer

What would we like to fix about the Transformer?

Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our

computation grows quadratically with the

sequence length!

• For recurrent models, it only grew linearly!

Quadratic computation as a function of sequence length

Sequence length / batch size

In
fe

re
n

ce
 t

im
e

(s
)

Work on improving on quadratic self-attention cost

Considerable recent work has gone into the question, Can we build models
like Transformers without paying the all-pairs self-attention cost?
For example, Linformer [Wang et al., 2020]

Key Idea:
- Linformer introduces a novel
concept called "compressed"
or "linearized" self-attention.
- Instead of computing
attention scores for all pairs of
input elements, it employs
linear projections to reduce
the complexity.

(Beltagy et al., 2020): Longformer: The Long-Document Transformer

(Zaheer et al., 2021): Big Bird: Transformers for Longer

Sequences

Key idea: use sparse attention patterns!

Example: Longformer / Big Bird

Do we even need to remove the quadratic cost of attention?

• As Transformers Scale Up: When Transformers are scaled to larger sizes, an increasingly

significant portion of computational resources is allocated to tasks outside of the self-attention

mechanism, despite its quadratic computational cost.

• Current Practice: In practice, nearly all large Transformer-based language models continue to

rely on the traditional quadratic-cost attention mechanism that has been presented.

• Challenges with Cost-Efficiency: Alternative, more computationally efficient methods often do

not perform as effectively when applied at a large scale.

• Exploring Cheaper Alternatives: Is there value in exploring cost-efficient alternatives to self-

attention, or could we unlock the potential for significantly improved models with much longer

contextual information (e.g., >100k tokens) if we find the right approach?

Do Transformer Modifications Transfer?

• "Surprisingly, we find that most modifications do not meaningfully improve

performance."

(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Vision Transformer (ViT)

https://magenta.tensorflow.org/music-transformer

(Huang et al., 2018): Music Transformer: Generating Music with Long-Term Structure

Music Transformer

Why transformer

Why Pretraining + Transformers

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

Credits from杨植麟, Recurrent AI

Why Pretraining + Transformers

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

• 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

Why Pretraining + Transformers

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

• 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

• 3. Because transformers use nothing but attention?

So what?

Why Pretraining + Transformers

• 1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

• 2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations

• 3. Because transformers use nothing but attention?

So what?

• 4. Because transformers learns contextualised word embeddings?

RNN also can learn contextualised word embeddings

Why Pretraining + Transformers

❖ Capacity: The model has sufficient expressive capabilities

❖ Optimization: Can optimize and obtain better solutions in a huge

expression space

❖ Generalization: Better solutions can generalize on test data

Scalability: Transformers scale much better with more parameters

Deep understanding of transformer

What if

✓ removing SAN

✓ removing FFN

✓ removing PE

✓ and many others?

Without FFN, pure SAN

Y Dong, JB Cordonnier, A Loukas. Attention is not all you need: Pure attention loses rank

doubly exponentially with depth. https://browse.arxiv.org/pdf/2103.03404.pdf

Without SAN, pure FNN

At least it works for computer vision.

Ilya Tolstikhin et.al MLP-Mixer: An all-MLP Architecture for Vision https://browse.arxiv.org/pdf/2105.01601.pdf

Replace SAN with fourier

❖ Highlight the potential of linear units as a

drop-in replacement for the attention

mechanism in text classification tasks.

❖ FNet will be effective as a lightweight

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon .
FNet: Mixing Tokens with Fourier Transforms. NAACL 2022

https://aclanthology.org/people/j/james-lee-thorp/
https://aclanthology.org/people/j/joshua-ainslie/
https://aclanthology.org/people/i/ilya-eckstein/
https://aclanthology.org/people/s/santiago-ontanon/
https://aclanthology.org/2022.naacl-main.319.pdf

How to place FFN and SAN

Ofir Press, Noah A. Smith, Omer Levy. Improving Transformer Models by Reordering their Sublayers.

https://browse.arxiv.org/pdf/1911.03864.pdf

What will happen if the position embedding model is removed?

Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, Jakob Grue Simonsen. On

Position Embeddings in BERT. https://openreview.net/pdf?id=onxoVA9FxMw

https://openreview.net/profile?id=~Benyou_Wang2
https://openreview.net/profile?id=~Lifeng_Shang1
https://openreview.net/profile?id=~Christina_Lioma1
https://openreview.net/profile?id=~Xin_Jiang1
https://openreview.net/profile?id=~Hao_Yang7
https://openreview.net/profile?id=~Qun_Liu1
https://openreview.net/profile?id=~Jakob_Grue_Simonsen1

Improvements for Norm

DeepNet - 1000 layer Transformers

A new normalization function (DEEPNORM) is introduced

[replacing it is not Layer Norm! Instead, modify it similarly to:

layernorm (x + f(x)) ---> layernorm(x*alpha + f(x)).

The proposed method combines the advantages of both schools,

namely the good performance of Post-LN and the stable training of

Pre-LN, making DEEPNORM the preferred alternative.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, Furu Wei. DeepNet: Scaling

Transformers to 1,000 Layers. https://browse.arxiv.org/pdf/2203.00555.pdf

https://browse.arxiv.org/pdf/2203.00555.pdf

Is the model deeper or wider?
Go Wider Instead of Deeper

❖ WideNet first compresses trainable parameters along with depth by parameter-sharing across transformer blocks.

❖ Each expert requires enough tokens to train.

Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, Yang You. Go Wider Instead of Deeper. https://arxiv.org/abs/2107.11817

https://arxiv.org/abs/2107.11817
https://arxiv.org/search/cs?searchtype=author&query=Xue,+F
https://arxiv.org/search/cs?searchtype=author&query=Shi,+Z
https://arxiv.org/search/cs?searchtype=author&query=Wei,+F
https://arxiv.org/search/cs?searchtype=author&query=Lou,+Y
https://arxiv.org/search/cs?searchtype=author&query=Liu,+Y
https://arxiv.org/search/cs?searchtype=author&query=You,+Y

Scaling law？

Scaling Law for Neural Language Models

Performance depends strongly on scale! We keep getting better performance as we

scale the model, data, and compute up!

Emergent abilities of large language models (TMLR ‘22).

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. Chi, T.

Hashimoto, O. Vinyals, P. Liang, J. Dean, & W. Fedus.

Scaling laws

GPT-4 Technical Report, OpenAI (2023)

https://arxiv.org/abs/2303.08774

Challenge to scaling law: Chinchilla’s Death

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Smaller models eventually reach the

limit of their capacity for knowledge, and

their learning slows, while that of a

larger model, with a larger capacity, will

overtake them and reach better

performance past a given amount of

training time.

While estimating how to get the best

bang during training, OpenAI &

DeepMind attempted to draw the Pareto

frontier.

Challenge to scaling law: Chinchilla’s Death

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Can Chinchillas picture a Llama’s sights?

❖ Each curve first plummets in a power law,

❖ and then seemingly enters a nearly-linear

decrease in loss (corresponding to a fairly

constant rate of knowledge acquisition).

❖ At the very tip of the curve, they all break this

line by flattening slightly.

❖ This should consider the cosine LR schedule.

Challenge to scaling law: Chinchilla’s Death

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Can Chinchillas picture a Llama’s sights?

Let’s picture instead a race:

All those models start at the

same time, and we want to

know which one crosses the

finish line first.

In other words, when

throwing a fixed amount of

compute at the training, who

learns the most in that time?

the 7B enters a near-linear regime, with a steep downward trend, and seems

on its way to maybe overpass the 13B again?

Emergent ability？

Emergent properties in LLMs:

Some ability of LM is not present in smaller models but is present in larger models

https://docs.google.com/presentation/d/1yzbmYB5E7G8lY2-KzhmArmPYwwl7o7CUST1xRZDUu1Y/edit?resourcekey=0-6_TnUMoK WCk_FN2BiPxmbw#slide=id.g1fc34b3ac18_0_27

Emergent Capability: Few-shot prompting

> A few-shot prompted task is

emergent if it achieves random

accuracy for small models and above-

random accuracy for large models.

Emergent capabilities may be a consequence of metric choice

It seems that emergent ability of a model only occurs if the measure of per-token error rate of any

model is scaled non-linearly or discontinuously.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are Emergent Abilities of Large Language Models a Mirage? https://browse.arxiv.org/pdf/2304.15004.pdf

Assignment 1: Using LLM for prompt engineering

See updates in our BB system, WeChat and Emails.

It will be released before the next lecture.

Tutorial and the homework

explanation will be in the next

lecture (Oct. 13th)

Acknowledgement

• Princeton COS 484: Natural Language Processing. Contextualized Word Embeddings. Fall 2019

• CS447: Natural Language Processing. Language Models. http://courses.engr.illinois.edu/cs447

• http://cs231n.stanford.edu/

• https://medium.com/@gautam.karmakar/summary-seq2seq-model-using-convolutional-neural-
network-b1eb100fb4c4

• Transformers and sequence- to-sequence learning. CS 685, Fall 2021. Mohit Iyyer. College of
Information and Computer Sciences. University of Massachusetts Amherst.
https://people.cs.umass.edu/~miyyer/cs685_f21/slides/05-transformers.pdf

http://courses.engr.illinois.edu/cs447
http://cs231n.stanford.edu/
https://medium.com/@gautam.karmakar/summary-seq2seq-model-using-convolutional-neural-network-b1eb100fb4c4

Challenge to scaling law: Chinchilla’s Death

https://espadrine.github.io/blog/posts/chinchilla-s-death.html

Can Chinchillas picture a Llama’s sights?

The slowdown in learning is an artefact of cosine schedule. The model does not

necessarily cease to have the capacity to learn at the same near-linear rate!

